Cho: . Chứng minh:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác ABM và tam giác CDM có :
AB=CD (gt)
BM=MD(cmt)
BD cạnh chung
=> \(\Delta ABM=\Delta CDM\)
b.*AB//CD
Vì \(\Delta ABM=\Delta CDM\) (cmt )
BAM=MCD( 2 góc tương ứng )
=>AB//CD
*AB=CD
Vì \(\Delta ABM=\Delta CDM\left(cmt\right)\)
=>AB=CD ( 2 cạnh tương ứng )
.Câu d.e.f áp dụng lại như vạy , câu g thì mình lười suy nghĩ ^^
b) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AF\cdot AB=AE\cdot AC\)
c: Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
a) Ta có :góc ABD = góc BDC (1)(2 góc so le trong của AB//CD)
góc IAB+gócABD=90 độ (tam giác IABvuông tại I)
lại có góc BDC+ góc DBC=90(do tam giác BDC vuông tại C)
mà ABD=BDC (Chứng minh trên)=> IAB=DBC(2)
Từ (1) và (2)=> tam giác IBA đồng dạng tam giác CDB
b) tam giác BDA vuông tại A đường cao AI nên ta có:
DI*DB=AD2mà AD=BC(ABCD là hình chữ nhật) nên DI*DB=BC2
c) ta có: DB*IB=AB2(hệ thức lượng trong tam giác vuông ABD)
mà AB=CD nên DB*DI=CD2
d) lại áp dụng hệ thức lượng trong tam giác ADB ta có: AI*DB=AD*AB
mà AB=CD;AD=BC nên BC*CD=AI*BD
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành