Cho tam giác ABC, M là trung điểm của BC. H và K theo thứ tự lá hình chiếu của B và C trên AM. Chứng minh rằng: CH//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BHM và tam giác CKM lần lượt vuông tại H và K có:
BM=MC(M là trung điểm BC)
\(\widehat{BMH}=\widehat{CMK}\)(đối đỉnh)
=> ΔBHM=ΔCKM(ch-gn)
=> \(\widehat{HBM}=\widehat{KCM}\)
Mà 2 góc này so le trong
=> BH//CK
Mà BH=CK(ΔBHM=ΔCKM)
=> BHCK là hình bình hành
=> CH//BK
Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có
MAK = MCK, OKA = OAK nên
MAK + OKA = MCK + OAK = 90 độ
Do đó AM vuông góc IK
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
Bài 2:
Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK
Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)
Do ED là đường trung bình tam giác BAK nên ED // AK (2)
Do ED là đường trung bình tam giác HCA nên ED // AH (3)
Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)
Từ (1) và (4) suy ra đpcm.
Bài 1:
Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!
Giải
Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)
Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK
Xét \(\Delta\)BMK và \(\Delta\)CMH có:
MH = MK (chứng minh trên)
^BMK = ^HMC
BM = CM (do M là trung điểm BC)
Suy ra \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)
Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)
Sửa đề: D,E lần lượt là hình chiếu của H trên AB,AC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AED}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{MAC}+\widehat{AED}\)
\(=\widehat{MCA}+\widehat{B}\)
\(=90^0\)
=>AM\(\perp\)DE
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>\(AH=\dfrac{48}{10}=4,8\left(cm\right)\)
Ta có: ADHE là hình chữ nhật
=>DE=AH
mà AH=4,8cm
nên DE=4,8cm
CHKB là hình bình hành suy ra CH // BK