K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

CHKB là hình bình hành suy ra CH // BK

10 tháng 10 2021

Xét tam giác BHM và tam giác CKM lần lượt vuông tại H và K có:

BM=MC(M là trung điểm BC)

\(\widehat{BMH}=\widehat{CMK}\)(đối đỉnh)

=> ΔBHM=ΔCKM(ch-gn)

=> \(\widehat{HBM}=\widehat{KCM}\)

Mà 2 góc này so le trong

=> BH//CK

Mà BH=CK(ΔBHM=ΔCKM)

=> BHCK là hình bình hành

=> CH//BK

24 tháng 10 2018

Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có 

MAK = MCK, OKA = OAK nên

MAK + OKA = MCK + OAK = 90 độ

Do đó AM vuông góc IK

18 tháng 11 2018

bạn ơi bạn làm như giải ý 

a: Xét tứ giác ADHE có 
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

31 tháng 7 2019

Bài 2:

A C D B E H K

Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK

Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)

Do ED là đường trung bình tam giác BAK nên ED // AK (2)

Do ED là đường trung bình tam giác HCA nên ED // AH (3)

Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)

Từ (1) và (4) suy ra đpcm.

31 tháng 7 2019

Bài 1:

A B C M K H

Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!

Giải

Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)

Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK 

Xét \(\Delta\)BMK và \(\Delta\)CMH có:

MH = MK (chứng minh trên)

^BMK = ^HMC

BM = CM (do M là trung điểm BC)

Suy ra  \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)

Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)

Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)

21 tháng 12 2023

Sửa đề: D,E lần lượt là hình chiếu của H trên AB,AC

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{MAC}+\widehat{AED}\)

\(=\widehat{MCA}+\widehat{B}\)

\(=90^0\)

=>AM\(\perp\)DE

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>\(AH=\dfrac{48}{10}=4,8\left(cm\right)\)

Ta có: ADHE là hình chữ nhật

=>DE=AH

mà AH=4,8cm

nên DE=4,8cm