Tìm số nguyên n sao cho : 2n - 1 chia hết cho n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 5 chia hết cho n - 2
n - 2 + 7 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
=> 7 chia hết cho n - 2
n - 2 thuộc Ư(7) = {-7 ; -1 ; 1 ; 7}
n - 2 = -7 => n = -5
n - 2 =-1 => N = 1
n - 2 = 1 => n = 3
n - 2 = 7 => n = 9
Vậy n thuộc {-5 ; 1 ; 3 ; 9}
2n + 1 chia hết cho n - 5
2n - 10 + 11 chia hết cho n - 5
Mà 2n + 10 chia hết cho n- 5
=> 11 chia hết cho n - 5
n - 5 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
n - 5 = -11 => n =-6
n - 5 = -1 => n = 4
n - 5 = 1 => n = 6
n - 5 =11 => n = 16
Vậy n thuộc {-6 ; 4 ; 6 ; 16}
p/s : kham khảo
Ta có:
n+5 = n - 2 + 7
mà n - 2 chia hết cho n - 2
nên suy ra 7 phải chia hết cho n - 2
suy ra n-2 thuộc ước của 7
xét các trường hợp
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
a) ta có: 2n + 1 chia hết cho n - 2
=> 2n - 4+ 5 chia hết cho n - 2
2.(n-2) + 5 chia hết cho n - 2
mà 2.(n-2) chia hết cho n - 2
=> 5 chia hết cho n - 2
=> n - 2 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn lập bảng xét giá trị hộ mk nha!
b) ta có: 2n-5 chia hết cho n + 1
=> 2n + 2 - 7 chia hết cho n + 1
2.(n+1) -7 chia hết cho n + 1
mà 2.(n+1) chia hết cho n + 1
=> 7 chia hết cho n + 1
=> n + 1 thuộc Ư(7)={1;-1;7;-7}
B, 3n chia hết cho n-1
3.(n-1)+3 chia hết cho n-1
3.(n-1)chia hết cho n-1 suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 mà ước của 3 là 1,3,-1,-3
n-1=1, n=2
n-1=3, n=4
n-1=-1, n=0
n-1 =-3, n=-2
ĐÚNG THÌ TICK CHO MÌNH NHÉ, CÂU C LÀM TƯƠNG TỰ
Ta có : \(2n-1⋮n-3\)
\(\Leftrightarrow2n-6+5⋮n-3\)
Thấy \(2n-6=2\left(n-3\right)⋮n-3\)
\(\Rightarrow5⋮n-3\)
- Để 5 chia hết cho n - 3 <=> \(n-3\inƯ_{\left(5\right)}\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow n\in\left\{4;2;8;-2\right\}\)
Vậy ...
2n - 1\(⋮\)n + 1
=> 2n + 2 - 3\(⋮\)n + 1
=> 2 ( n + 1 ) - 3\(⋮\)n + 1
Vì 2 ( n + 1 )\(⋮\)n + 1 => 3\(⋮\)n + 1
=> n + 1\(\in\){ \(\pm3;\pm1\)}
=> n\(\in\){ - 4 ; - 2 ; 0 ; 2 } ( tm n\(\in\)Z )