cho a>=b>=c>0 Cm \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{c^2+a^2}\)
\(\ge a-\frac{ab^2}{2ab}+b-\frac{bc^2}{2bc}+c-\frac{ca^2}{2ca}=a-\frac{b}{2}+b-\frac{c}{2}+c-\frac{a}{2}=\frac{a+b+c}{2}\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng BĐT Cauchy cho 2 số dương \(\frac{a}{b^2}\) và \(\frac{1}{a}\) ta có :
\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=\frac{2}{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b^2}=\frac{1}{a}\Leftrightarrow a=b\)
+ Tương tự ta cm đc :
\(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\). Dấu "=" xảy ra <=> b = c
\(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\). Dấu "=" xảy ra <=> a = c
Do đó : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)
áp dụng cô si ta có
\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)
ÁP DỤNG co si tiếp tao có \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)
theo cô si ta có \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)
\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)
từ 1 và 2 ta được
\(6\ge2+4\)
bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD
bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành \(\frac{9}{a+b+c}\ge2+4\) nhé
https://olm.vn/hoi-dap/detail/263385033080.html . Tham khảo Inequalities.