Cho 3 số đôi một khác nhau thỏa mãn: \(a^2+b=b^2+c=c^2+a.\)
Tính \(T=\left(a+b-1\right)\left(b+c-1\right)\left(c+a-1\right).\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}a^2+b=b^2+c\\b^2+c=c^2+a\\a^2+b=c^2+a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b^2=c-b\\b^2-c^2=a-c\\a^2-c^2=a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(a-c\right)\left(a+c\right)=a-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{c-b}{a-b}\\b+c=\dfrac{a-c}{b-c}\\a+c=\dfrac{a-b}{a-c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b-1=\dfrac{c-a}{a-b}\\b+c-1=\dfrac{a-b}{b-c}\\a+c-1=\dfrac{c-b}{a-c}\end{matrix}\right.\)
\(\Rightarrow T=\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)\)
\(=\dfrac{\left(c-a\right)\left(a-b\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Ta có :\(a^2+b=b^2+c\Rightarrow\left(a-b\right)\left(a+b\right)=c-b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)=c-b-a+b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=c-a\)
Tương tự \(\hept{\begin{cases}\left(b-c\right)\left(b+c-1\right)=a-b\\\left(a-c\right)\left(a+c-1\right)=c-b\end{cases}}\)
Nhận vế với vế của các đẳng thức trên ta được :
\(\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=1\)
ta có : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)
\(\Rightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Rightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Rightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\)(vì \(a\ne b\))
\(\Rightarrow a\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2b+abc+ca^2=0\)
\(\Rightarrow a^2\left(b+c\right)+abc=0\Rightarrow2016+abc=0\)
\(\Rightarrow abc=-2016\)
TA LẠI CÓ : \(ab+bc+ac=0\Rightarrow c\left(ab+bc+ca\right)=0\)
\(\Rightarrow bc^2+ac^2+abc=0\Rightarrow c^2\left(a+b\right)+abc=0\)
\(\Rightarrow c^2\left(a+b\right)-2016=0\Rightarrow c^2\left(a+b\right)=2016\)
\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)
\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)
\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)
\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)
\(\Rightarrow A=1\)
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)
Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)
Ta có:
\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)
\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)
Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)
\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)
Ta có:\(a+b+c=0\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)
\(a^2+b=b^2+c=c^2+a\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b-b^2-c=0\\b^2+c-c^2-a=0\\c^2+a-a^2-b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=c-b\\b^2-c^2=a-c\\c^2-a^2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(c-a\right)\left(c+a\right)=b-a\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{c-b}{a-b}\\b+c=\frac{a-c}{b-c}\\c+a=\frac{b-a}{c-a}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b-1=\frac{c-a}{a-b}\\b+c-1=\frac{a-b}{b-c}\\c+a-1=\frac{b-c}{c-a}\end{cases}}\)( * )
Thay ( * ) vào T ta được : \(T=\frac{\left(c-a\right)\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Vậy T = 1