K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021
Vì ba người có hai người quen nhau vậy năm người thì có một người quen hai người
26 tháng 9 2022

Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.

Chọn B và C là hai bạn không quen nhau trong nhóm này.

Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.

Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.

1 tháng 5 2017

Giải:

Vì mỗi thí sinh phải giải 5 bài toán. Mỗi bài toán đúng được tính 4 điểm. Mỗi bài toán sai hoặc không làm được đều bị trừ 2 điểm nên ta có 5 trường hợp sau:

Nếu đúng 5 bài thì số điểm được là: 5. 4 = 20 (điểm).

Nếu đúng 4 bài thì số điểm được là: 4. 4 - 2 = 14 (điểm).

Nếu đúng 3 bài thì số điểm được là: 3. 4 – 4 = 8 (điểm).

Nếu đúng 2 bài thì số điểm được là: 2. 4 – 6 = 2 (điểm).

Nếu đúng 1 bài hoặc không đúng bài nào thì đều được 0 điểm.

Như vậy có 6 thí sinh dự thi nhưng chỉ có 5 loại điểm nên theo nguyên lý Điricle sẽ có ít nhất 2 thí sinh bằng điểm nhau.

1 tháng 5 2017

Bố con hâm vừa hỏi vừa trả lời