Vẽ tam giác ABC vuông tại B, có AB=6, BC=8.
A) Tính góc ACB( làm tròn đến phút)
B)vẽ ad là đg pg của góc BAC.
Tính tanADB
C) Vẽ đg pg của BCA cắt AD tại I,M là tđ ac nữa.C/M AD vuông MI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) Xét ΔCBA vuông tại B có
\(\tan\widehat{ACB}=\frac{AB}{BC}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\widehat{ACB}\simeq36^052'\)
Vậy: \(\widehat{ACB}\simeq36^052'\)
b)
Áp dụng định lí Pytago vào ΔCBA vuông tại B, ta được:
\(AC^2=BA^2+BC^2\)
\(\Leftrightarrow AC^2=6^2+8^2=100\)
hay \(AC=\sqrt{100}=10\)
Xét ΔCBA có AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\frac{AB}{BD}=\frac{AC}{CD}\)(Tính chất đường phân giác của tam giác)
hay \(\frac{6}{BD}=\frac{10}{CD}\)
Ta có: BD+CD=BC(D nằm giữa B và C)
hay BD+CD=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{6}{BD}=\frac{10}{CD}=\frac{6+10}{BD+CD}=\frac{16}{8}=2\)
\(\Leftrightarrow BD=\frac{6}{2}=3\)
Xét ΔABD vuông tại B có
\(\tan\widehat{ADB}=\frac{AB}{BD}=\frac{6}{3}=2\)
Giải giùm em câu C vs.Em đang cần gấp ạ.Em cảm ơn