Cho A= n6-n4+2n3+2n2 với ( n thuộc N và n>1)
CMR: A không phải là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
Đặt \(P=n^6-n^4+2n^3+2n^2\) thì
\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)
\(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với \(n\in N;\) \(n>1\), ta có:
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
và \(n^2-2n+2=n^2-2\left(n-1\right)\text{<}n^2\)
Theo đó, \(\left(n-1\right)^2\text{< }n^2-2n+2\text{< }n^2\)
Mặt khác, \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp
Do đó, \(n^2-2n+2\) không thể là một số chính phương.
Vậy, \(P\) không là số chính phương với mọi \(n\in N;\) \(n>1\).
Đặt \(P=n^6-n^4+2n^3+2n^2\) thì
\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)
\(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với \(n\in N;\) \(n>1\), ta có:
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
và \(n^2>n^2-2\left(n-1\right)=n^2-2n+2\)
Theo đó, \(n^2>n^2-2n+2>\left(n-1\right)^2\)
Mặt khác, \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp
Do đó, \(n^2-2n+2\) không thể là một số chính phương.
Vậy, \(P\) không là số chính phương với mọi \(n\in N;\) và \(n>1\)
Ta có \(n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)
\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)
\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)
\(=\left(n^2+9n+9-9\right)\left(n^2+9n+9+9\right)+81\)
\(=\left(n^2+9n+9\right)^2-9^2+81\)
\(=\left(n^2+9n+9\right)^2\)
\(\Rightarrow n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\) là scp
ta có
\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta có
\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)
Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)
Từ (1) và (2)
=>\(\left(n-1\right)^2
=>A ko phải là số chình phương