TÍNH \(B=\sqrt[3]{6\sqrt{3}+10}+\sqrt[3]{6\sqrt{3}-10}.\)
GIÚP MÌNH VỚI MỌI NGƯỜI ƠI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)
Khi đó ta có a2 + b2 = 6; ab = 2; a + b = \(\sqrt{10}\) ; a - b = \(\sqrt{2}\); a2 - b2 = \(2\sqrt{5}\)
Ta có cái ban đầu
\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)=
\(\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)
\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}=\frac{6\sqrt{2}}{11}\)
a.
\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)
b.
\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)
c.
\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)
d.
\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
e.
Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)
Khi đó:
$a^3+b^3=4$
$ab=\frac{2}{3}$
$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$
$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$
$(E-2)(E^2+2E+2)=0$
Dễ thấy $E^2+2E+2>0$ nên $E-2=0$
$\Leftrightarrow E=2$
dat A =\(\sqrt{2+\sqrt{3}}\)+ \(\sqrt{2-\sqrt{3}}\)
=>A\(\sqrt{2}\)=\(\sqrt{4+2\sqrt{3}}\)+\(\sqrt{4-2\sqrt{3}}\)
=>A\(\sqrt{2}\)=\(\sqrt{3+2\sqrt{3}.1+1}\)+\(\sqrt{3-2\sqrt{3}.1+1}\)
=>A\(\sqrt{2}\)=\(\sqrt{\left(\sqrt{3}+1\right)^2}\)+\(\sqrt{\left(\sqrt{3}-1\right)^2}\)
=>A\(\sqrt{2}\)=\(\sqrt{3}\)+1+\(\sqrt{3}\)-1
=A\(\sqrt{2}\)=2\(\sqrt{3}\)
=>A=\(\frac{2\sqrt{3}}{\sqrt{2}}\)=\(\sqrt{2}\).\(\sqrt{3}\)=\(\sqrt{6}\)
cau b bn binh phuong len roi tinh nhe
Làm ngắn gọn nha, có gì ko hiểu bạn cmt nhé :3
Và ko viết lại đề nha (lười ~~)
\(1,\left(\sqrt{4\cdot7}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\\ =\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{4\cdot2}\\ =\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+7\sqrt{8}\\ =3\cdot7-2\cdot7\cdot\sqrt{2}+7\cdot2\sqrt{2} =21\)
\(2,\left(\sqrt{4\cdot2}-3\sqrt{2}+\sqrt{10}\right)\cdot\left(\sqrt{2}-3\sqrt{4\cdot0,1}\right)\\ =\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-6\sqrt{0,1}\right)\\ =\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}-6\sqrt{0,1}\right)\\ =2\sqrt{5}-2-6+6\sqrt{0,2}=2\sqrt{5}-8+6\sqrt{0,2}\)
(khúc này mình chỉ biết rút gọn đến đây thui ._.)
\(3,\left(15\sqrt{25\cdot2}+5\sqrt{100\cdot2}-3\sqrt{225\cdot2}\right):\sqrt{10}\\ =\left(75\sqrt{2}+50\sqrt{2}-45\sqrt{2}\right):\sqrt{10}\\ =80\sqrt{2}:\sqrt{10}\\ =80\sqrt{2}:\left(\sqrt{2}\cdot\sqrt{5}\right)=16\sqrt{5}\)
\(4,\sqrt{5+2\cdot\sqrt{5}+1}+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|\\ =\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
\(5,\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-\sqrt{9-2\cdot3\cdot\sqrt{2}+2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\\ =3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{14+6\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\sqrt{5^2}+2.3\sqrt{5}+3^2}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\left(\sqrt{5}+3\right)^2}-\dfrac{4}{\sqrt{5}-1}\\ =\left|\sqrt{5}+3\right|-\dfrac{4}{\sqrt{5}-1}\\ =\dfrac{\left(\sqrt{5}+3\right)\left(\sqrt{5}-1\right)-4}{\sqrt{5}-1}\\ =\dfrac{2+2\sqrt{5}-4}{\sqrt{5}-1}\\ =\dfrac{-2+2\sqrt{5}}{\sqrt{5}-1}\\ =\dfrac{2\left(-1+\sqrt{5}\right)}{\sqrt{5}-1}\\ =2\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\\ =3\sqrt{3}-\dfrac{6}{\sqrt{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(=\dfrac{3\sqrt{3}.\sqrt{3}-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{9-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}\\ =1\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\\ =\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}\\ =\dfrac{27\sqrt{6}+18\sqrt{2}-18\sqrt{2}-4\sqrt{6}}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}\\ =\dfrac{23\sqrt{6}}{54-8}\\ =\dfrac{23\sqrt{6}}{46}\\ =\dfrac{\sqrt{6}}{2}\)