K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

min = 2 => (3 . 2 + 7)2 - 169 = 149 - 169 (loại)

min = 3 => (3 . 3 + 7)2 - 169 = 256 - 169 = 87

87 : 4 = 21 ( dư 3 ) ( loại )

min = 4 => (3 . 4 + 7)2 - 169 = 351 - 169 = 182

182 : 4 = 45 ( dư 2 )

min = 5 => (3 . 5 + 7)2 - 169 = 484 - 169 = 315

315 : 4 = 78 ( dư 3 )

min = 6 => (3 . 6 + 7)2 - 169 = 625 - 169 

\(625-1⋮4;169-1⋮4\)

Vậy thỏa mãn ĐK : \(n⋮6\)

3 tháng 11 2024

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11 2024

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

NV
21 tháng 11 2021

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

21 tháng 11 2021

có cách nào k dùng mod k ạ?

17 tháng 9 2015

1. a chia het cho 20 va 12 suy ra a chia het cho 2;3;4;5.

vi 2

2 . 3 =6; 2 .4 =8

suy ra a chia 20 ko the  du 8

a chia 12 ko the du 6 

2.

=4a - 4b + 7b

=4 . [a - b] + 7b

a - b chia het cho 7 ; 7b chia het cho 7 suy ra 4a + 3b chia het cho 7

3.

a    3n - 3 + chia het n -1

      3[n - 1] + 7 chia het n - 1

      vi 3[n - 1]chia het chgo 7 suy ra 7 chia het n -1

vay n = 8     

17 tháng 9 2015

- à ừ vậy giải từng bài 1

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)