chứng minh a/b=c/d chứng minh a+b/b=c+d/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
Ta có : \(ad=bc\)
=> \(\frac{a}{c}=\frac{b}{d}\)
\(ADTCDTSBN,tađược\):
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
= > \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
=> \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
\(\frac{a+b}{b}=\frac{kb+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)
\(\frac{c+d}{d}=\frac{kd+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)
Vậy: \(\frac{a+b}{b}=\frac{c+d}{d}\left(=k+1\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
\(\frac{a+b}{b}=\frac{kb+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)(1)
\(\frac{c+d}{d}=\frac{kd+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)(2)
Từ (1) và (2) => \(\frac{a+b}{b}=\frac{c+d}{d}\)=> đpcm
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)