Với n không chia hết cho 3. Chứng minh: 52n + 5n + 1 chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
Ta có 52n+7 = 25n+7
Lại có 25:8 dư 1 => 25n:8 dư 1n
Mà 1n = 1 => 25n chia 8 dư 1
=> 25n+7 chia 8 dư 1+7 hay dư 8
Mà 8⋮8 => đpcm
Lời giải:
$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.
Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$
$=5^{6k}.25+5.5^{3k}+1$
Vì $5^3\equiv 1\pmod {31}$
$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Nếu $n=3k+2$ thì:
$A=5^{2(3k+2)}+5^{3k+2}+1$
$=5^{6k}.5^4+5^{3k}.5^2+1$
$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Từ 2 TH suy ra $A\vdots 31$ (đpcm)
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Khá dễ khi ta dùng đồng dư !
Vì n không chia hết cho 3 nên ta xét 2 dạng của n \(\hept{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\left(k\inℕ\right)\)
Nếu \(n=3k+1\) thay vào ta được:
\(5^{2n}+5^n+1=5^{6k+2}+5^{3k+1}+1\)
\(=\left(5^3\right)^{2k}\cdot5^2+\left(5^3\right)^k\cdot5+1\)
\(=125^{2k}\cdot25+125^k\cdot5+1\)
\(\equiv1\cdot25+1\cdot5+1\equiv31\equiv0\left(mod31\right)\)
=> Thỏa mãn
Nếu \(n=3k+2\) thay vào ta được:
\(5^{2n}+5^n+1=5^{6k+4}+5^{3k+2}+1\)
\(=\left(5^3\right)^{2k}\cdot5^4+\left(5^3\right)^k\cdot5^2+1\)
\(=125^{2k}\cdot625+125^k\cdot25+1\)
\(\equiv1\cdot5+1\cdot25+1\equiv31\equiv0\left(mod31\right)\)
=> Thỏa mãn
Vậy với mọi n không chia hết cho 3 thì \(5^{2n}+5^n+1\) chia hết cho 31