OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m để bất phương trình đúng với mọi x ∈ R
\(\frac{4sin2x+cos2x+17}{3cos2x+sin2x+m+1}\ge2\)
\(\Leftrightarrow\frac{4sin2x+cos2x+17}{3cos2x+sin2x+m+1}-2\ge0\) (tất nhiên là với mọi x)
\(\Leftrightarrow\frac{2sin2x-5cos2x-2m+15}{3cos2x+sin2x+m+1}\ge0\)
TH1: \(\left\{{}\begin{matrix}2sin2x-5cos2x-2m+15\ge0\\3cos2x+sin2x+m+1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{\sqrt{29}}sin2x-\frac{5}{\sqrt{29}}cos2x\ge\frac{2m-15}{\sqrt{29}}\\\frac{1}{\sqrt{10}}sin2x+\frac{3}{\sqrt{10}}cos2x>\frac{-m-1}{\sqrt{10}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\left(2x-a\right)\ge\frac{2m-15}{\sqrt{29}}\\sin\left(2x+b\right)>\frac{-m-1}{\sqrt{10}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-15}{\sqrt{29}}\le-1\\\frac{-m-1}{\sqrt{10}}< -1\end{matrix}\right.\) tới đây chắc bạn tự giải được
TH2: tương tự:
\(\left\{{}\begin{matrix}2sin2x-5cos2x-2m+15\le0\\3cos2x+sin2x+m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-15}{\sqrt{29}}\ge1\\\frac{-m-1}{\sqrt{10}}>1\end{matrix}\right.\) \(\Leftrightarrow...\)
Tìm m để các bất phương trình 4 sin 2 x + cos 2 x + 17 3 cos 2 x + sin 2 x + m + 1 ≥ 2 đúng với mọi x ∈ R.
A. 10 - 3 < m ≤ 15 - 29 2
B. 10 - 1 < m ≤ 15 - 29 2
C. 10 - 1 < m ≤ 15 + 29 2
D. 10 - 1 < m < 10 + 1
Đáp án B
Tìm m để Bất phương trình 4 sin 2 x + cos 2 x + 17 sin 2 x + 3 cos 2 x + m + 1 ≥ 2 luôn đúng?
Tìm m để Bất phương trình 4 sin 2 x + cos 2 x + 17 sin 2 x + 3 cos 2 x + m + 1 ≥ 2 luôn đúng ?
A. 10 - 1 ≤ m ≤ 15 + 29 2
B. 10 - 1 ≤ m ≤ 15 - 29 2
C. 10 - 3 ≤ m ≤ 15 - 29 2
D. 10 - 1 ≤ m ≤ 10 + 1
Tìm m để các bất phương trình sau đúng với mọi x
3 sin 2 x + cos 2 x sin 2 x + 4 cos 2 x + 1 ≤ m + 1
A. m = 1
B. m > 1
C. m > 2
D.Tất cả sai
Đáp án D
Tìm tất cả các giá trị của m để bất phương trình 3 . sin 2 x + cos 2 x sin 2 x + 4 . cos 2 x + 1 ≤ m + 1 đúng với mọi x ∈ ℝ
41.Tìm m để phương trình y=\(\frac{4sin2x++17}{sin2x+4cos^2x+1}\) đúng với x\(\in\)R
Tìm m để bất phương trình 2 cos 2 x + 3 sin 2 x ≥ m . 3 cos 2 x nghiệm đúng ∀ x ∈ ℝ
A. m ≤ 0
B. m ≤ 1
C. m ≤ 4
D. m ≤ - 1
Tìm m để các bất phương trình 3 sin 2 x + cos 2 x sin 2 x + 4 cos 2 x + 1 ≤ m + 1 đúng với mọi x ∈ R
Chọn C
A. m ≥ 3 5 4
B. m ≥ 3 5 + 9 4
C. m ≥ 65 - 9 4
D. m ≥ 3 5 - 9 4
\(\Leftrightarrow\frac{4sin2x+cos2x+17}{3cos2x+sin2x+m+1}-2\ge0\) (tất nhiên là với mọi x)
\(\Leftrightarrow\frac{2sin2x-5cos2x-2m+15}{3cos2x+sin2x+m+1}\ge0\)
TH1: \(\left\{{}\begin{matrix}2sin2x-5cos2x-2m+15\ge0\\3cos2x+sin2x+m+1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{\sqrt{29}}sin2x-\frac{5}{\sqrt{29}}cos2x\ge\frac{2m-15}{\sqrt{29}}\\\frac{1}{\sqrt{10}}sin2x+\frac{3}{\sqrt{10}}cos2x>\frac{-m-1}{\sqrt{10}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\left(2x-a\right)\ge\frac{2m-15}{\sqrt{29}}\\sin\left(2x+b\right)>\frac{-m-1}{\sqrt{10}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-15}{\sqrt{29}}\le-1\\\frac{-m-1}{\sqrt{10}}< -1\end{matrix}\right.\) tới đây chắc bạn tự giải được
TH2: tương tự:
\(\left\{{}\begin{matrix}2sin2x-5cos2x-2m+15\le0\\3cos2x+sin2x+m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-15}{\sqrt{29}}\ge1\\\frac{-m-1}{\sqrt{10}}>1\end{matrix}\right.\) \(\Leftrightarrow...\)