K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2020

2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3

= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3

= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]

= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )

= ( x - 1 )( x + 1 )

9 tháng 10 2020

Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)

\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\)

\(\left(x^2-x+2\right)\left(x-1\right)-x^2\left(x-1\right)^2+\left(2x+1\right)\left(x-1\right)^3\)

\(=\left(x-1\right)\left[x^2-x+2-x^2\left(x-1\right)+\left(2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\left(x-1\right)\left(x^2-x+2-x^3+x^2+2x^3-4x^2+2x+x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x^3-x^2-x+3\right)\)

15 tháng 10 2021

\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)

15 tháng 10 2021

phân tích ra  ii chj làm vậy ai chả lm đc

24 tháng 9 2023

\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :

Đặt : \(x^2+2x=a\)

Do đó ta có đa thức :

\(a.\left(a+4\right)+3=a^2+4a+3\)

\(=a^2+a+3a+3\)

\(=a\left(a+1\right)+3\left(a+1\right)\)

\(=\left(a+1\right)\left(a+3\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

 

24 tháng 9 2023

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)

18 tháng 9 2016

\(x^4+2x^3+x^2+x+1=x^4+x^3+x^3+x^2+x+1=x^3\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+x^2+1\right)\)

18 tháng 7 2021

`(x-1)^2-2(x-1)(2x+1)+(2x+1)^2`

`=(x-1-2x-1)^2`

`=(-x-2)^2`

18 tháng 7 2021

\(\left(x-1\right)^2-2\left(x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left(x-1-2x-1\right)^2=\left(-x-2\right)^2=\left(x+2\right)^2\)

18 tháng 7 2021

\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+x+1\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

18 tháng 7 2021

x3 + 2x2 + 2x + 1 

= (x3 + 1) + (2x2 + 2x)

= (x + 1)(x2 + x + 1) + 2x(x + 1)

= (x + 1)(x2 + x + 1 + 2x)

= (x + 1)(x2 + 3x + 1)

 Chúc bạn học tốt

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Biểu thức này không phân tích thành nhân tử.

\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 5 2021

x4 + x3 + 2x2 + x + 1 

= (x4 + 2x2 + 1) + (x3 + x)

= (x2 + 1)2 + x (x2 + 1)

= (x2 + 1) ( x2 + 1 + x)

= (x2 + 1) (x + 1)2

30 tháng 5 2021

Trả lời:

x4 + x3 + 2x+ x + 1

= ( x+ 2x2 + 1 ) + ( x3 + x )

= ( x+ 1 )+ x ( x+ 1)

= ( x2 + 1 ) ( x+ 1 + x )

= ( x2 + 1) ( x + 1 )2