K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2023

(1+3+5+7+...+2019+2021)

A=1−3+5−7+......−2019+2021−2023

A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)

A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cp)

a=−2.506A=−2.506

A=−1012A=−1012

24 tháng 2 2023

cảm ơn nhìu

10 tháng 9 2020

Nhanh giúp mk nhé!

Cần gấp lắm!

số lượng số hạng của dãy số là 

    (  2021 - 2  ) : 1 + 1 = 2020 

tổng của dãy số là 

  ( 2021 + 2) x 2020 : 2 = 2043230

                                     vậy A = \(\frac{1}{2043230}\)

21 tháng 8 2020

Ta có : 12 - 22 + 32 - 42 +  52 - 62 + .... + 20192 - 20202

= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + .... + (2019 - 2020)(2020 + 2019)

= -3 - 7 - 11 - ...  - 4039

= - (3 + 7 + 11 + ... + 4039)

= - 1010.(4039 + 3) : 2 

= - 1010.2021

= -2041210

21 tháng 8 2020

\(=\left(2^2-1\right)+\left(4^2-3^2\right)+\left(6^2-5^2\right)+...+\left(2020^2-2019^2\right)=\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2020-2019\right)\left(2020+2019\right)=\)

\(=3+7+11+....+4039=\frac{1009\left(4039+3\right)}{2}=\)

29 tháng 6 2021

Ta có :

B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)

B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\)  (1)

Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\)   (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)

 

Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)

Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)