biết a.b= hoặc < 4 CM a+b = hoặc < 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Từ giả thiết ta có:
\(\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)
\(\Leftrightarrow bc+1\ge b+c\)
\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta có:
\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)
\(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)
a, x= 3;2;1;0
b, x= 0;1;2;3;4;5
c, x= 0;1;2
d, x= 2;3;4;5;6
e, x= 0;1;2;3
Nho k nha
a) - 12 < x < 13
=> x \(\in\) { - 11 ; - 10 ; - 9 ; ... ; 10 ; 11 ; 12 }
b) - 12 \(\le\) x < 13
=> x \(\in\) { - 12 ; - 11 ; - 10 ; ... ; 10 ; 11 ; 12 }
c) - 12 \(\le\) x \(\le\) 13
=> x \(\in\) { - 12 ; - 11 ; - 10 ; ... ; 10 ; 11 ; 12 ; 13 }
d) - 120 \(\le\) x < 121
=> x \(\in\) { - 120 ; - 119 ; - 118 ; ... ; 119 ; 120 }
a) | x-3 | -1 > hoặc bằng 0
1+| x-3 | - 1 > hoặc bằng 0 +1
1+| x-3 | - 1 > hoặc bằng 1
Dấu = xảy ra khi x-3-1 =0
x =0+1
x-3 =1
x=1+3
x=4
b) | x-2 | +3 < hoặc bằng 4
1+| x-2 | +3 < hoặc bằng 4+1
1+ |x-2 | +3 < hoặc bằng 5
Dấu = xảy ra khi x-2 +3 =4
x -2 = 4-3
x -2 = 1
x = 1+2
x = 3
c) 2< |x| <5
Vì |x|>2 và |x| <5
nên |x|= 3 , 4
Suy ra x=3,-3,4,-4
Vậy x { 3, -3, 4 ,-4 }
a) mọi x thuộc Z khác 3
b) x thuộc {1 ; 2 ; 3 }
c) x thuộc {-4 ; -3 ; 3 ;4}