K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

x là một số nào đó trong dãy số tuwh nhiên và y cũng như vậy

bạn ghi câu trên vào vở đi mình không nói dối đâu thật đó mình học rồi nên mình biết

2 tháng 9 2021

Ko biết Anh ơi

30 tháng 9 2021

\(\dfrac{1}{3}< \dfrac{x}{y}< \dfrac{1}{2}\Rightarrow\dfrac{4}{12}< \dfrac{x}{y}< \dfrac{6}{12}\Rightarrow\dfrac{x}{y}=\dfrac{5}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{12}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{12}=\dfrac{2x}{10}=\dfrac{3y}{36}=\dfrac{2x+3y}{10+36}=\dfrac{19}{46}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{46}\\y=\dfrac{114}{23}\end{matrix}\right.\)

Mà \(x,y\in Z\)

Vậy ko có x,y nguyên thỏa mãn đề

6 tháng 11 2021

khó phết

2 tháng 9 2021

 Ko biết Anh gì ơi

19 tháng 4 2020

a) \(\frac{2x}{3y}=\frac{-1}{3}\) và 2x + 3y = 7

Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{\left(-1\right)+3}=\frac{7}{2}\)

=> \(\hept{\begin{cases}2x=\frac{7}{2}\cdot\left(-1\right)=-\frac{7}{2}\\3y=\frac{7}{2}\cdot3=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-\frac{7}{2}\right):2=-\frac{7}{4}\\y=\frac{21}{2}:3=\frac{7}{2}\end{cases}}\)

b) 21x = 19y => \(\frac{21x}{399}=\frac{19y}{399}\)=> \(\frac{x}{19}=\frac{y}{21}\)

Áp dụng t/c dãy tỉ số = nhau ta có :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

=> x = -38,y = -42

\(a,\frac{2x}{3y}=-\frac{1}{3}\)và \(2x+3y=7\)

Theo bài ra ta có 

\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)

Áp dụng dãy tỉ số bằng nhau ta có

\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)

\(\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)

\(b,21x=19y\)và \(x-y=4\)

Theo bài ra ta có

\(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng dãy tỉ số bằng nhau ta có

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

\(\hept{\begin{cases}\frac{x}{19}=-2\\\frac{y}{21}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-38\\y=-42\end{cases}}}\)

11 tháng 10 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 
22 tháng 8 2020

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=3z\\2x-3y+4z=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\\2x-3y+4z=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}\\2x-3y+4z=1\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}=\frac{2x-3y+4z}{4-9+\frac{4}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)

\(\frac{2x}{4}=-\frac{3}{11}\Rightarrow x=-\frac{6}{11}\)

\(\frac{3y}{9}=-\frac{3}{11}\Rightarrow y=-\frac{9}{11}\)

\(\frac{4z}{\frac{4}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{1}{11}\)

Vậy ...

22 tháng 8 2020

\(\frac{x}{2}=\frac{y}{3}=3z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\)  

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}=\frac{2x-3y+4z}{2\cdot2-3\cdot3+4\cdot\frac{1}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)                

\(\frac{x}{2}=-\frac{3}{11}\Rightarrow x=-\frac{3}{11}\cdot2=-\frac{6}{11}\)             

\(\frac{y}{3}=-\frac{3}{11}\Rightarrow y=-\frac{3}{11}\cdot3=-\frac{9}{11}\)                 

\(\frac{z}{\frac{1}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{3}{11}\cdot\frac{1}{3}=-\frac{1}{11}\)

28 tháng 10 2023

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

30 tháng 8 2015

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

30 tháng 8 2015

Nguyễn Đình Dũng tục tỉu thế

19 tháng 9 2019

a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)

\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

19 tháng 9 2019

\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)

Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)

Cộng vế theo vế ta có:

\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)

\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)

P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !