1 Tìm x:
a) (x-3)^3=27
b) x^3=x^6
c) (2x+2)^5=(2x+2)^6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
a: Ta có: \(\left(x-5\right)\left(x+3\right)=x\left(x-3\right)\)
\(\Leftrightarrow x^2-2x-15-x^2+3x=0\)
\(\Leftrightarrow x=15\)
b: Ta có: \(\left(x+2\right)^2=\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x-6\right)\left(x+6\right)=x^2\)
\(\Leftrightarrow x^2-36=x^2\)(vô lý)
a. (x - 5)(x + 3) = x(x - 3)
<=> x2 + 3x - 5x - 15 = x2 - 3x
<=> x2 - x2 + 3x - 5x + 3x - 15 = 0
<=> x = 15
b. (x + 2)2 = (x - 1)(x + 2)
<=> x2 + 4x + 4 = x2 + 2x - x - 2
<=> x2 - x2 + 4x - 2x + x = -2 - 4
<=> 3x = -5
<=> \(x=\dfrac{-5}{3}\)
c. (x - 6)(x + 6) = x2
<=> x2 - 36 - x2 = 0
<=> x2 - x2 = 36
<=> 0 = 36 (vô lí)
Vậy nghiệm của PT là \(S=\varnothing\)
d. (2x - 3)2 = 4x2 - 8
<=> 4x2 - 12x + 9 - 4x2 + 8 = 0
<=> 4x2 - 4x2 - 12x = -8 - 9
<=> -12x = -17
<=> \(x=\dfrac{17}{12}\)
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
a) Ta có: \(\left(2x-5\right)^3=216\)
\(\Leftrightarrow2x-5=6\)
\(\Leftrightarrow2x=11\)
hay \(x=\dfrac{11}{2}\)
b) Ta có: \(2x-3⋮x+4\)
\(\Leftrightarrow-11⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-3;-5;7;-15\right\}\)
Alo, sugeni two wai phem. Si ga no, you woo be the me that nas te, ai gi da
a) \(\left(x-3\right)^3=27\)
\(\Leftrightarrow x-3=3\)
\(\Rightarrow x=6\)
b) \(x^3=x^6\)
\(\Leftrightarrow x^6-x^3=0\)
\(\Leftrightarrow x^3\left(x^3-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) \(\left(2x+2\right)^5=\left(2x+2\right)^6\)
\(\Leftrightarrow\left(2x+2\right)^5\left(2x+2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x+2\right)^5=0\\2x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{1}{2}\end{cases}}\)