\(\sqrt{x^2-12x+36}-x=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
h: \(\sqrt{18x}+\sqrt{32x}-14=0\)
\(\Leftrightarrow7\sqrt{2x}=14\)
hay x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
3: Ta có: \(\sqrt{4x+1}=x+1\)
\(\Leftrightarrow x^2+2x+1=4x+1\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
\(\Leftrightarrow3\sqrt{x-1}=15\)
\(\Leftrightarrow x-1=25\)
hay x=26
5: Ta có: \(\sqrt{4x^2-12x+9}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(x+3-4\sqrt{x-1}=\left(\sqrt{x-1}-2\right)^2\)và \(x+15-8\sqrt{x-1}=\left(\sqrt{x-1}-4\right)^2\)
Suy ra: B=\(\sqrt{x-1}-2+\sqrt{x-1}-4=2\sqrt{x-1}-6\)
Ta lại có : \(x-1\ge0\)=>\(B\ge-6\)dấu ''='' xảy ra khi: x-1=0 <=>x=1
Vậy minB=-6 khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
â) \(\sqrt{x+9}=7\\ \Rightarrow x+9=49\\ \Rightarrow x=40\)
b) \(\sqrt{x-4}=4-x\\ \Rightarrow x-4=16-8x+x^2\\ \Rightarrow x^2-9x+20=0\\ \Rightarrow\left(x-4\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
c) \(\sqrt{x^2-12x+36}=81\\ \Rightarrow x-6=81\\ \Rightarrow x=87\)
a: Ta có: \(\sqrt{x+9}=7\)
\(\Leftrightarrow x+9=49\)
hay x=40
b: Ta có: \(\sqrt{x-4}=4-x\)
\(\Leftrightarrow\left(x-4\right)^2-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=5\left(loại\right)\end{matrix}\right.\)
c: Ta có: \(\sqrt{x^2-12x+36}=81\)
\(\Leftrightarrow\left|x-6\right|=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=81\\x-6=-81\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left|2x+1\right|=\left|x+6\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(\hept{\begin{cases}\sqrt{x^2-8x+16}+\sqrt{x^2-12x+36}=|x-4|+|6-x|\ge|x-4+6-x|=2\\-x^2+10x-23=-\left(x^2-10x+23\right)=-\left(x^2-10x+25-2\right)=-\left(x-5\right)^2+2\le2\end{cases}}\)
Dấu " = " xảy ra khi: x = 5.
Vậy x = 5.
\(\sqrt{x^2-12x+36}-x=3\)
\(\Leftrightarrow x^2-12x+36=x^2+6x+9\)
\(\Leftrightarrow-18x=27\)
hay \(x=-\dfrac{3}{2}\)