\(\sqrt{x}\)\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\y^2-xy+5x+4y=9\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
ĐKXĐ:...
\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)
Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:
\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)
\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)
Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)
\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)
\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)
Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)
\(\Rightarrow t-3=0\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)
Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)
\(\Leftrightarrow2y^2-1=0\)
\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)
\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)
Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
Trừ theo vế 2 phương trình ta được:
\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)
Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)
\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.
Do đó \(x=y\)
Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy...
Câu 1:
HPT \(\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=11\\ (x+y)^2-3xy-2(x+y)=-31\end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\) thì hệ trở thành:
\( \left\{\begin{matrix} a+b=11\\ a^2-3b-2a=-31\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=11-a\\ a^2-3b-2a+31=0\end{matrix}\right.\)
\(\Rightarrow a^2-3(11-a)-2a+31=0\)
\(\Leftrightarrow a^2+a-2=0\Leftrightarrow (a-1)(a+2)=0\)
\(\Rightarrow \left[\begin{matrix} a=1\\ a=-2\end{matrix}\right.\)
Nếu $a=1\Rightarrow b=11-a=10$
Như vậy $x+y=1; xy=10$
\(\Rightarrow x(1-x)=10\Leftrightarrow x^2-x+10=0\Leftrightarrow (x-\frac{1}{2})^2=-\frac{39}{4}< 0\) (vô lý)
Nếu \(a=-2\Rightarrow b=11-a=13\)
Như vậy $x+y=-2; xy=13$
$\Rightarrow x(-2-x)=13\Leftrightarrow x^2+2x+13=0\Leftrightarrow (x+1)^2=-12< 0$ (vô lý)
Vậy HPT vô nghiệm.
Câu 2:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy-(x-y)=-3\\ (x-y)^2-(x-y)+3xy=6\end{matrix}\right.\)
Đặt \(xy=a; x-y=b\) thì hệ trở thành:
\(\left\{\begin{matrix} a-b=-3\\ b^2-b+3a=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b-3\\ b^2-b+3a-6=0\end{matrix}\right.\)
\(\Rightarrow b^2-b+3(b-3)-6=0\)
\(\Leftrightarrow b^2+2b-15=0\Leftrightarrow (b-3)(b+5)=0\)
\(\Rightarrow \left[\begin{matrix} b=3\\ b=-5\end{matrix}\right.\)
Nếu $b=3=x-y\Rightarrow a=xy=b-3=0$
\(\Rightarrow (x,y)=(0,-3); (3,0)\)
Nếu \(b=x-y=-5\Rightarrow a=xy=b-3=-8\)
\(\Rightarrow (y-5)y=-8\)
\(\Leftrightarrow y^2-5y+8=0\Leftrightarrow (y-2,5)^2=-1,75< 0\) (vô lý)
Vậy $(x,y)=(0,-3)$ hoặc $(3,0)$
Trừ vế cho vế:
\(x^2-5x+2xy-4y=-6\)
\(\Leftrightarrow x^2-5xy+6+2y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+2y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3+2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2y-3\end{matrix}\right.\) thay vào pt đầu ....
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
Đk: \(\left\{{}\begin{matrix}y\ge0\\x>1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{9\left(x-1\right)y}=y\left(2+\sqrt{\dfrac{y}{x-1}}\right)\left(1\right)\\y^2+xy-5x+7=0\left(2\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{\left(x-1\right)y}\left(a\ge0\right)\\b=\sqrt{\dfrac{y}{x-1}}\left(b\ge0\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow3a=ab\left(2+b\right)\)
Với \(a=0\Rightarrow\sqrt{\left(x-1\right)y}=0\Rightarrow y=0\) (vì \(x\ne1\)).
Thay \(y=0\) vào (2) ta được:
\(2^2+x.2-5x+7=0\)
\(\Leftrightarrow x=\dfrac{11}{3}\left(nhận\right)\)
Với \(a\ne0\Rightarrow3=b\left(2+b\right)\)
\(\Leftrightarrow b^2+2b-3=0\)
\(\Leftrightarrow b^2-b+3b-3=0\)
\(\Leftrightarrow b\left(b-1\right)+3\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=1\left(nhận\right)\\b=-3\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{y}{x-1}}=1\Rightarrow x=y+1\)
Thay vào (2) ta được:
\(y^2+\left(y+1\right)y-5\left(y+1\right)+7=0\)
\(\Leftrightarrow y^2+y^2+y-5y-5+7=0\)
\(\Leftrightarrow2y^2-4y+2=0\)
\(\Leftrightarrow2\left(y-1\right)^2=0\)
\(\Leftrightarrow y=1\Rightarrow x=1+1=2\)
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{11}{3};0\right),\left(2;1\right)\right\}\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.