\(\frac{7}{\sqrt{25}+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{4}{9}}:\sqrt{\frac{25}{81}}-|-1\frac{7}{8}|\)
\(=\frac{2}{3}:\frac{5}{9}-1\frac{7}{8}\)
\(=\frac{2}{3}\times\frac{9}{5}-\frac{15}{8}\)
\(=\frac{6}{5}-\frac{15}{8}\)
\(=\frac{27}{40}\)
a: \(=3^2+\left(3^4\right)^{-0.75}-5^{2\cdot0.5}\)
\(=9-5+3^{-3}=4+\dfrac{1}{27}=\dfrac{109}{27}\)
b: \(=2^{4-6\sqrt{7}}\cdot2^{6\sqrt{7}}=2^{4-6\sqrt{7}+6\sqrt{7}}=2^4=16\)
a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)
áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)
(so sánh bình phương 2 số sẽ ra nha)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
áp dụng công thức cho biểu thức A ta CM được
A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)
=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)
từ (1) và (2) => ĐPCM
b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)
và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)
từ (1) và (2)=>ĐPCM
(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)
MỜI BẠN THAM KHẢO
\(=\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{6}{5}==\frac{5\cdot7\cdot6}{3\cdot5\cdot5}=\frac{14}{5}\)
\(\sqrt{2\frac{7}{9}\cdot}\sqrt{1\frac{24}{25}}\cdot\sqrt{\frac{36}{25}}\)
\(\Leftrightarrow\sqrt{\frac{25}{9}}\cdot\sqrt{\frac{49}{25}}\cdot\sqrt{\frac{36}{25}}\)
\(\Leftrightarrow\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{6}{5}\)\(=\frac{5\cdot7\cdot6}{3\cdot5\cdot5}=\frac{210}{75}=\frac{14}{5}\)
giải hộ mik với
đáp án là \(\frac{7}{13}\)