K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

Tự vẽ hình:

a) Ta có: Áp dụng định lý Pytago:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=5^2-3^2=16=4^2\)

\(\Rightarrow AC=4\left(cm\right)\)

Từ đó ta dễ dàng tính được: \(AH.BC=AB.AC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4(cm)

b) Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

hay \(\widehat{B}\simeq53^0\)

\(\Leftrightarrow\widehat{C}=37^0\)

c) Xét ΔABC có AE là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)

17 tháng 4 2016

a) Xét tam giác ABC  vuông tại A có  AB=3 cm; BC= 5 cm

=> AB\(^2\)+BC\(^2\)=AC\(^2\)

= 3\(^2\)+5\(^2\) =AC\(^2\)

=9 + 25= AC\(^2\)

=> 34 = AC\(^2\)

=> \(\sqrt{34}\)= AC

Vậy AC = \(\sqrt{34}\) cm

17 tháng 4 2016

1) Áp dụng định lí Py-ta-go vào tam giác ABC:

BC2= AB2+ AC2

--> AC2= BC- AB2= 52 - 32= 25- 9 = 16

\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)

2) Xét \(\Delta\)BAD và \(\Delta\)BHD :

BAD=BHD=90o 

BD chung

ABD=HBD

\(\Rightarrow\)  \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)

\(\Rightarrow\)BA=BH (2 cạnh t/ứng)

\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\)  BH vuông góc với AH

3) ko biết

10 tháng 8 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b)Xét tam giác ABC vuông tại A có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠B + ∠C = 90 0  ⇒ ∠C = 90 0 - 53 , 1 0 = 36 , 9 0

Xét tứ giác APHQ có:

∠(PAQ) = ∠(AQH) = ∠(APH) =  90 0

⇒ Tứ giác APHQ là hình chữ nhật

⇒ PQ = AH = 12/5 (cm)

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạg với ΔHAC

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: góc ADE=90 độ-góc ABD

góc AED=góc BEH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADE=góc AED

=>AD=AE

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H  có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: góc AED=góc BEH=90 độ-góc DBC

góc ADE=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AED=góc ADE

=>AD=AE