K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AB=\dfrac{2}{3}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{4}{9}\)

\(\Leftrightarrow HB=\dfrac{4}{9}HC\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=144\)

\(\Leftrightarrow HC^2=324\)

\(\Leftrightarrow HC=18\left(cm\right)\)

\(\Leftrightarrow HB=8\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{8\cdot26}=4\sqrt{13}\left(cm\right)\)

19 tháng 6 2023

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

3 tháng 8 2017

a, Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có:

BC^2 = AB^2 + AC^2

         = 8^2 + 6^2 

         = 100

=> BC = 10.

b, Áp dụng tính chất đường trung tuyến của tam giác , ta có:

EC = 2/3 AC; AE = 1/3 AC.

Mà AC = 6.

 => EC = 2/3*6 = 4.

      EA = 1/3*6 = 2.

c) ko biết làm

3 tháng 8 2017

a Áp dụng định lí pytago vào tg ABC 

\(AB^2\)+\(AC^2\)=\(BC^2\)<=> 6^2+8^2=BC^2<=> BC=10

b, Xét tg BDC có  2 đường trung tuyến BK và CA cắt nhau tại E

=> E là trọng tâm tgBDC

=> CE=2/3.AC=2/3.6=4cm

=> AE=AC-CE=6-4=2cm

c,Xét tg BCD có CA vừa là đường cao vừa là đường tung tuyến

=> tgBCD cân tại c (đpcm)