Cho tam giác ABC vuông tại A, trung tuyến AM = 2, BN = 3. tính AB, AC, BC
Giúp mình với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(AB=\dfrac{2}{3}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{4}{9}\)
\(\Leftrightarrow HB=\dfrac{4}{9}HC\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=144\)
\(\Leftrightarrow HC^2=324\)
\(\Leftrightarrow HC=18\left(cm\right)\)
\(\Leftrightarrow HB=8\left(cm\right)\)
\(\Leftrightarrow AB=\sqrt{8\cdot26}=4\sqrt{13}\left(cm\right)\)
a)
Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)
Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)
Trong tam giác ABN vuông tại A, đường cao AG, ta có:
\(AB^2=BG.BN\) (hệ thức lượng)
\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)
Tam giác ABN vuông tại A
\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
Áp dụng đl pytago vào tam giác ABC:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)
Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải
a, Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có:
BC^2 = AB^2 + AC^2
= 8^2 + 6^2
= 100
=> BC = 10.
b, Áp dụng tính chất đường trung tuyến của tam giác , ta có:
EC = 2/3 AC; AE = 1/3 AC.
Mà AC = 6.
=> EC = 2/3*6 = 4.
EA = 1/3*6 = 2.
c) ko biết làm
a Áp dụng định lí pytago vào tg ABC
\(AB^2\)+\(AC^2\)=\(BC^2\)<=> 6^2+8^2=BC^2<=> BC=10
b, Xét tg BDC có 2 đường trung tuyến BK và CA cắt nhau tại E
=> E là trọng tâm tgBDC
=> CE=2/3.AC=2/3.6=4cm
=> AE=AC-CE=6-4=2cm
c,Xét tg BCD có CA vừa là đường cao vừa là đường tung tuyến
=> tgBCD cân tại c (đpcm)