Phân tích đa thức thành nhân tử
\(x^{m+1}-x^m\)
\(x^{m+2}-x^m\)
\(x^{m+2}-x^2\)
Help me !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^{m+1}-x^m=x^m\left(x-1\right)\)
\(x^{m+2}-x^{m+1}=x^{m+1}\left(x-1\right)\)
(x^m+2)+(x^m) = 2xm+2 = 2(xm+1)
(x^x+1)-(x^x)-1 = xx+1-xx-1 = 0
(m^4)-(n^4) = (m2)2-(n2)2 = (m2-n2)(m2+n2)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Ta có : x35 + x34 + .... + x2 + x + 1
= (x35 + x34) + .... + (x3 + x2) + (x + 1)
= x34(x + 1) + ..... + x2(x + 1) + 1(x + 1)
= (x + 1) (x34 + x32 + .... + x2 + 1)
Ta có : (x - 9)(x - 7) + 1
= x2 - 16x + 63 + 1
= x2 - 16x + 64
= (x - 8)2
xm+3+1+xm+3-(x+1)=xm+3x+xm+3-(x+1)=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
Ta có : xm+4 + xm+3,-x-1
<=>xm. x4 + xm . x3 - (x+1)
<=> xm+3. (x+1) -( x+1)
<=> (xm+3-1)(x+1)
Nhớ mình nha mình âm diểm rồi:
M=(x+2)(x+3)(x+4)(x+5)-24
M=(x2+3x+2x+6)(x2+5x+4x+20)-24
M=(x2+5x+6)(x2+9x+20)-24
M=x4+9x3+20x2+5x3 +14x+100x+6x2+54x+120-24
M=x4+14x3+26x2+168x+96
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a: \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^2z\left(x+y\right)-xz^2\left(x+y\right)\)
\(=xz\left(x+y\right)\left(x-z\right)\)
a) \(xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a) xy +y2 - x-y
y(x+y) -(x+y)
(x+y)(y-1)
c) x2 - 4x +3
x2 -3x - x - 3
x(x-3) -(x-3)
(x-3)(x-1)
câu 2
| |||||||||||||||||||||
ĐỂ phép chia hết thì m+12 = 0 => m = -12
có thể đúng cũng có thể sai ,có j sai hoặc ko đúng ib mk nhé
\(x^{m+1}-x^m=x^m.x-x^m=x^m.\left(x-1\right)\)
\(x^{m+2}-x^m=x^m.x^2-x^m=x^m.\left(x^2-1\right)\)
\(x^{m+2}-x^2=x^m.x^2-x^2=x^2.\left(x^m-1\right)\)
Bài làm :
\(x^{m+1}-x^m=x^m.x-x^m=x^m.\left(x-1\right)\)
\(x^{m+2}-x^m=x^m.x^2-x^m=x^m.\left(x^2-1\right)\)
\(x^{m+2}-x^2=x^m.x^2-x^2=x^2.\left(x^m-1\right)\)