tìm x biết: 3^x+2 - 3^x = 10^2 - 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 . (3x - 2) - 32 . 23 = 28
=> 10 . (3x - 2) - 9 . 8 = 28
=> 10 . (3x - 2) - 72 = 28
=> 10 . (3x - 2) = 100
=> 3x - 2 = 10
=> 3x = 12
=> x = 12 : 3 = 4
Vậy x = 4
\(10\left(3x-2\right)-9\cdot8=28\)
\(10\left(3x-2\right)-72=28\)
\(10\left(3x-2\right)=28+72\)
\(10\left(3x-2\right)=100\)
\(3x-2=100:10\)
\(3x-2=10\)
\(3x=12\)
\(x=4\)
\(\Rightarrow\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{x.\left(x+1\right)}=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(\frac{1}{5}-\frac{1}{x+1}\right)=\frac{2}{5}-\frac{2}{x+1}=\frac{3}{10}\)
=> \(\frac{2}{x+1}\)= \(\frac{1}{10}=\frac{2}{20}\)
=> x +1 = 20 => x = 19
bạn trên sai rồi, nếu đã nhân đôi lên tất cả thì cx phải nhân luôn con cuối chứ
\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)
\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)
a) \(-45:5.\left(-3-2x\right)=3\)
\(-9.\left(-3-2x\right)=3\)
\(-3-2x=\left(3:-9\right)\)
\(-3-2x=\dfrac{-1}{3}\)
\(-2x=-3-\dfrac{1}{3}\)
-2x=\(\dfrac{-10}{3}\)
\(x=\dfrac{-10}{3}:-2\)
\(x=\dfrac{5}{3}\)
b)
3x - 28 = x + 36
<=> 3x - x = 36 + 28
<=> 2x = 64
<=> x = 32
Vậy x = 32
c)
(-12)2.x = 56 + 10.13.x
144.x = 56 + 130.x
144x – 130 x = 56
14x = 56
x = 56: 14
x = 4
Vậy x = 4
\(1,\sqrt{3}x-3=\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}x-3=3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(x-\sqrt{3}\right)=3\sqrt{3}\)
\(\Leftrightarrow x-\sqrt{3}=3\)
\(\Leftrightarrow x=3+\sqrt{3}\)
\(2,\sqrt{2}x-\sqrt{28}=\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}x-2\sqrt{7}=4\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}x=4\sqrt{2}+2\sqrt{7}\)
\(\Leftrightarrow x=\dfrac{\sqrt{2^2}\left(2\sqrt{2}+\sqrt{7}\right)}{\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{2}\left(2\sqrt{2}+\sqrt{7}\right)\)
\(\Leftrightarrow x=4+\sqrt{14}\)
\(3,\sqrt{6}x-2\sqrt{6}=\sqrt{54}\)
\(\Leftrightarrow\sqrt{6}\left(x-2\right)=3\sqrt{6}\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
\(4,\sqrt{3}x-\sqrt{2}x=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)x=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
1/ \(\Rightarrow\left(\frac{1}{3}\right)^x\left[1+\left(\frac{1}{3}\right)^2\right]=\frac{10}{27}\)
\(\Rightarrow\left(\frac{1}{3}\right)^x.\frac{10}{9}=\frac{10}{27}\)
\(\Rightarrow\left(\frac{1}{3}\right)^x=\frac{1}{3}\Rightarrow\left(\frac{1}{3}\right)^x=\left(\frac{1}{3}\right)^1\Rightarrow x=1\)
2/ Có: 2a + 7b = 28
=> 2a + 2a = 28 (vì 2a = 7b)
=> 4a = 28
=> a = 7
Thay a = 7 vào 2a = 7b ta đc:
2.7 = 7.b
=> b = 2
Vậy a = 7 ; b = 2
\(\Leftrightarrow\frac{1}{2}+\left(\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{2}+2.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3}{10}\)
\(\Leftrightarrow2.\left(\frac{1}{7}-\frac{1}{x+1}\right)=\frac{3}{10}-\frac{1}{2}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{7}-\frac{1}{x+1}=-\frac{1}{5}:2=-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{7}-\left(-\frac{1}{10}\right)=\frac{17}{70}\)
\(\Rightarrow17x+17=70\)
=> không tồn tại n vì n là số tự nhiên
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)