Cho a + b = 6, a^2 + b^2 = 20
Tính giá trị của M = a^3 + b^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=-35x^5y^4z\\ b,=6x^2-30x-6x^2-3x=-33x\\ c,=x^3-9x^2-2x^2+18x-x+9=x^3-11x^2+17x+9\\ 2,\\ A\left(x\right)+B\left(x\right)=10-2x+4x^3-5x^2-10x^3-5x+6x^2-20\\ =-6x^3+x^2-7x-10\\ A\left(x\right)-B\left(x\right)=10-2x+4x^3-5x^2+10x^3+5x-6x^2+20\\ =14x^3-11x^2+3x+30\\ 3,\\ a,M\left(x\right)=5x+20=0\\ \Leftrightarrow x=-4\\ b,N\left(x\right)=100x^2-49=0\\ \Leftrightarrow\left(10x-7\right)\left(10x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\\ c,P\left(x\right)=3x-15=0\\ \Leftrightarrow x=5\)
Bài 1;
a)\(5x^3yz.\left(-7x^2y^3\right)=-35.x^5y^4z\)
b)\(6x\left(x-5\right)-x\left(6x+3\right)=6x^2-30x-6x^2-3x=-33x\)
c) \(\left(x-9\right)\left(x^2-2x-1\right)=x^3-2x^2-x-9x^2+18x+9=x^3-11x^2+17x+9\)
a, a x 6 = 3 x 6 = 18
b, a + b = 4 + 2 = 6
c, b + a = 2 + 4 = 6
d, a - b = 8 - 5 = 3
e, m x n = 5 x 9 = 45
\(a+b=6\)
<=> \(\left(a+b\right)^2=36\)
<=> \(a^2+2ab+b^2=36\)
<=> \(2ab=36-a^2-b^2=-1974\)
<=> \(ab=--987\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=6^3-3.\left(-987\right).6=17982\)
\(a^3+b^3=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=6\left(2010+2ab\right)\)
\(12060+6\left[\left(a+b\right)^2-a^2-b^2\right]\)
\(12060+6\left(36-2010\right)\)
\(=12060-11844\)
\(=216\)
Đặt S = a + b
P = a * b
\(a^2+b^2=20\)
\(a^2+2ab+b^2-2ab=20\)
\(\left(a+b\right)^2-2ab=20\)
\(6^2-2P=20\)
\(36-2P=20\)
\(2P=36-20\)
\(2P=16\)
\(P=8\)
\(a^3+b^3\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=S^3-3PS\)
\(=6^3-3\cdot8\cdot6\)
\(=216-144\)
\(=72\)