Chứng minh với a,b>0 thỏa mãn a+b=1 thì
\(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\frac{1}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{2ab}=4+\frac{1}{2ab}\)
Ta có: \(\frac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\frac{\left(a+b\right)^2}{2}\ge2ab\) (BĐT AM-GM or CÔ si gì đó)
\(VT\ge4+\frac{1}{\frac{\left(a+b\right)^2}{2}}=4+2=6^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a+b=1\end{cases}}\Leftrightarrow}\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
Ta có : \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}=4\)
\(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}=2\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{a^2+b^2}\ge4+2=6\)
Em mới vừa nghĩ ra cách khác )):
\(VT=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2-2ab+b^2}=a^2+b^2+\frac{4}{a^2+b^2-2}\)
\(=a^2+b^2-2+\frac{4}{a^2+b^2-2}+2\)
\(\ge2\sqrt{\left(a^2+b^2-2\right).\frac{4}{a^2+b^2-2}}+2=6\)
câu a)
đặt A= vế trái
=>A=1/2ab+1/2ab+1/(a2+b2) (3)
(a+b)2>=4ab (tự cm)
=>1>=4ab
hay 4ab <=1
=>2ab<=1/2
=>1/2ab>=2 (1)
sau đó áp dụng BĐT:1/x+1/y >= 4/(x+y) ta đc :
1/2ab+1/(a2+b2) >= 4/(a+b)2=4/1=4 (2)
từ (1),(2),(3)=>dpcm
\(N=\Sigma\frac{3}{b+c}+\Sigma\frac{a^2}{b+c}\ge\Sigma\frac{3}{3-a}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\left(Svac\right)\)
\(=\Sigma\frac{3}{3-a}+\frac{3}{2}\)
Để C/m \(N\ge6\)thì \(\Sigma\frac{3}{3-a}\ge\frac{9}{2}\)
Áp dụng Svac \(\frac{3}{3-a}+\frac{3}{3-b}+\frac{3}{3-c}\ge\frac{\left(\sqrt{3}+\sqrt{3}+\sqrt{3}\right)^2}{3+3+3-\left(a+b+c\right)}=\frac{9}{2}\left(Q.E.D\right)\)
Dấu bằng tại a=b=c=1
Áp dụng bđt ngược chiều là ra
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{2ab+a^2+b^2}+\frac{1}{2\left(\frac{a+b}{2}\right)^2}=\frac{4}{\left(a+b\right)^2}+2=6\)
hmm... nếu mà xét dấu bằng thì tại a=b=1/2