Cho hình thang cân MNPQ đáy MN , PQ . Gọi O là giao điểm của MQ và NP.
a, CMR : Tam giác OMN cân .
b, CMR : Tam giác OMP = Tam giác ONQ .
c, Gọi I là giao điểm của MP và NQ .
CMR : Tam giác NIQ = Tam giác MIP .
Vẽ cả hình .!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác mnq và tam giác meq có
góc nmq=góc qme ( gt)
mn=me(gt)
mq chung
=> tam giác mnq= tam giác meq(c.g.c)
=>NQ = QE(2 cạnh tg ứng)
a: Xét ΔMNQ có
A là trung điểm của MN
B là trung điểm của MQ
Do đó: AB là đường trung bình của ΔMNQ
Suy ra: AB//NQ và AB=NQ/2(1)
Xét ΔNPQ có
C là trung điểm của QP
D là trung điểm của NP
Do đó: CD là đường trung bình của ΔNPQ
Suy ra: CD//NQ và CD=NQ/2(2)
Từ (1) và (2) suy ra ABCD là hình bình hành
a: Xét tứ giác MNCB có MN//CB
nên MNCB là hình thang
Hình thang MNCB có \(\widehat{MBC}=\widehat{NCB}\)
nên MNCB là hình thang cân
b: MNCB là hình thang cân
=>MB=NC và MC=NB
AM+MB=AB
AN+NC=AC
mà MB=NC và AB=AC
nên AM=AN
Xét ΔANB và ΔAMC có
AN=AM
NB=MC
AB=AC
Do đó: ΔANB=ΔAMC
=>\(\widehat{ANB}=\widehat{AMC}=90^0\)
=>BN vuông góc AC
Xét ΔABC có
BN,CM là đường cao
BN cắt CM tại O
Do đó: O là trực tâm của ΔABC
=>AO\(\perp\)BC(1)
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)BC(2)
Từ (1) và (2) suy ra A,O,I thẳng hàng