\(M=\frac{x\sqrt{x-1}}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}\right)^3-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}\right)^3+1}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)+\left(x+1\right)}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
Để xem nào ...
Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
ĐKXĐ : x > 0 ; x khác 1
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\left(\frac{x-1}{\sqrt{x}}\right)\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right)+\frac{2x+2}{\sqrt{x}}\)
\(A=2+\frac{2x+2}{\sqrt{x}}=\frac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)
\(A=2\left(\sqrt{x}+\frac{1}{\sqrt{x}}+1\right)\ge2\left(2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+1\right)=6\)
Dấu "=" xảy ra khi \(x=1\) ko phù hợp ĐKXĐ nên \(A_{min}\) ko tồn tại
ĐKXĐ:\(x\ne1;x>0\)
\(A=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\frac{x-1}{\sqrt{x}}.\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{x-1}\)
\(A=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\sqrt{x}}\)
\(A=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+2+\frac{2}{\sqrt{x}}\ge2\sqrt{2\sqrt{x}.\frac{2}{\sqrt{x}}}+2=6\)
"="\(\Leftrightarrow x=1\)

GIAO LUU
\(Lim_{x\rightarrow vc}=\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\\ \)
\(\Leftrightarrow Lim_{x\rightarrow vc}=\frac{\sqrt{\frac{x+\sqrt{x}}{x}}}{\sqrt{\frac{x+\sqrt{x+\sqrt{x}}}{x}}+1}=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{x+\sqrt{x}}{x^2}}}+1}\\ \)
\(\Leftrightarrow\frac{Lim}{x\rightarrow+vc}=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{\sqrt{x^3}}}}+1}=\frac{\sqrt{1+\frac{1}{+vc}}}{\sqrt{1+\sqrt{\frac{1}{+vc}+\frac{1}{+vc}}}+1}=\frac{\sqrt{1+0}}{\sqrt{1+\sqrt{0+0}}+1}=\frac{1}{2}\)
Điều kiện: x>0, x khác 1
Ta có: \(M=\frac{x\sqrt{x-1}}{x-\sqrt{x}}-\frac{x\sqrt{x+1}}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}\right)^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}\right)^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)