Tìm x, y, t biết:
(2 - 3x)6 = (3x - 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`-3x=2y `
`=> x/2 = -y/3 `
AD t/c của dãy tỉ số bằng nhau ta có
`x/2 =-y/3 = (x-y)/(2+3) = 6/5`
`=>{(x=2*6/5 = 12/5),(y=-3*6/5 =-18/5):}`
a) `6/x =-3/2`
`=>x =6 :(-3/2) = 6*(-2/3)=-4`
`b)`\(-3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{-3}\)
Áp dụng t/c của DTSBN , ta đc :
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{x-y}{2+3}=\dfrac{6}{5}\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{6}{5}\\\dfrac{y}{-3}=\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=-\dfrac{18}{5}\end{matrix}\right. \)
`a)`
`6/x=-3/2`
`x=6:(-3/2)`
`x=6*(-2/3)`
`x=-4`
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
a/ \(x^3+3x^2+3x+1+6=0\)
\(\Leftrightarrow\left(x+1\right)^3=-6\)
\(\Leftrightarrow x+1=-\sqrt[3]{6}\)
\(\Rightarrow x=-1-\sqrt[3]{6}\)
b/ \(16x^3-16x^2+4x^2+3x-7=0\)
\(\Leftrightarrow16x^2\left(x-1\right)+\left(x-1\right)\left(4x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\16x^2+4x+7=0\left(vn\right)\end{matrix}\right.\)
\(A=27x^3-54x^2+36x-8+54x^2-6+4\)
\(=27x^3+36x-10\)
\(B=8x^3+36x^2+54x+27-2x^3-12x^2-24x-16\)
\(=6x^3+24x^2+30x+9\)
Áp dụng HĐT \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(M=\left(-2\right)^3+3\left(x+y-1\right)\left(x+y+1\right)\left(-2\right)+6\left(x+y\right)^2\)
\(=-8-6\left[\left(x+y\right)^2-1\right]+6\left(x+y\right)^2\)
\(=-2\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
Ta có : (2 - 3x)6 = 3x - 2
=> (3x - 2)6 = 3x - 2
=> (3x - 2)6 - (3x - 2) = 0
=> (3x - 2)[(3x - 2)5 - 1) = 0
=> \(\orbr{\begin{cases}3x-2=0\\\left(3x-2\right)^5=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\3x-2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=1\end{cases}}\)
Vây \(x\in\left\{\frac{2}{3};1\right\}\)
\(\left(2-3x\right)^6=3x-2\Leftrightarrow\left(2-3x\right)^6+\left(2-3x\right)=0\)
\(\left(2-3x\right)\left[\left(2-3x\right)^5+1\right]=0\Leftrightarrow\orbr{\begin{cases}2-3x=0\\\left(2-3x\right)^5=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=2\\2-3x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}\)