baaif 1 chứng tỏ
\(\sqrt{a+\sqrt{b}}\ge\sqrt{a+b}\) với \(a\ge0,b\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(\sqrt{a+\sqrt{b}}\mp\sqrt{a-\sqrt{b}}\right)^2=\left(\sqrt{2\left(a\mp\sqrt{a^2-b}\right)}\right)^2\Leftrightarrow a+\sqrt{b}+a-\sqrt{b}\mp2\sqrt{\left(a+\sqrt{b}\right)\cdot\left(a-\sqrt{b}\right)}=2a\mp2\sqrt{a^2-b}\Leftrightarrow2a\mp2\sqrt{a^2-b}=2a\mp2\sqrt{a^2-b}\) (luôn đúng) \(\Rightarrowđpcm\)
Cả 2 vế đều không âm nên bình phương hai vế ta được bất đẳng thức tương đương. Điều phải chứng minh tương đương với:
\(\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+2\sqrt{ab}+b}{4}\ge0\)
\(\Leftrightarrow\dfrac{a-2\sqrt{ab}+b}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)
Bất đẳng thức cuối cùng luôn đúng.
a) \(a+b-2\sqrt{ab}\ge0\)
<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )
=> đpcm
b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)
<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)
<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)
<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
=> đpcm
Ta có :
\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)
\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)
\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b
Với b\(\ge\)0, a\(\ge\)\(\sqrt{b}\) ta bình phương 2 vế lên có:
\(\sqrt{a\pm \sqrt{b}}^2\)=\((\sqrt{\dfrac{\sqrt{a+\sqrt{a^2-b}}}{2}}\)\pm \(\sqrt{\dfrac{\sqrt{a-\sqrt{a^2-b}}}{2}})^2\)
Xét vế trái ta có:
\(\sqrt{(a\pm \sqrt{b})^2}\)=\(a\pm \sqrt{b})
Áp dụng BĐT căn trung bình bình phương ta có:
*BĐT này mk ko biết rõ tên nó viết cả ra :v, dạng tổng quát nó đây (kiểu AM-GM ấy)*
với a1;a2;...an ko âm thì \(\sqrt{\frac{a_1^2+b_1^2+....+a_n^2}{n}}\ge\frac{a_1+a_2+...+a_n}{n}\)
\(VT=\sqrt{\frac{a+b}{2}}=\sqrt{\frac{\sqrt{a^2}+\sqrt{b^2}}{2}}\)
\(\ge\frac{\sqrt{a}+\sqrt{b}}{2}=VP\)
Dấu "=" xảy ra khi \(a=b\)
ta có a>=b>=0 =>\(ab\ge b^2\)=>\(\sqrt{ab}\ge b\)
\(\left(\sqrt{a}-\sqrt{b}\right)^2\le a-b\Rightarrow a+b-2\sqrt{ab}\le a-b\)
=>\(2b-2\sqrt{ab}=< 0\)
luôn đúng(cmt)=>dpcm
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\)hiển nhiên đúng \(\forall a,b\ge0\) ---> ĐPCM