K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

19 tháng 3 2017

trả lời giúp với ạ đang cần bài gấp 

19 tháng 3 2017

a. xét tam giác ABC và tam giác HAC có

góc ACB= góc HCA ( góc chung)

góc BAC = góc AHC (=90độ)

do đó tam giác ABC đồng dạng với tam giác HAC(g.g)

b. theo bài ra ta có góc BAC=90 độ

suy ra tam giác ABC vuôg tại A

ta lại có AB=6cm, AC=8cm

suy ra AB ^2+ AC^2= BC^2

thay vào ta có  6^2+ 8^2= BC^2

suy ra BC^2= 10^2

suy ra BC = 10 (cm)

17 tháng 4 2016

mình chỉ tóm tắt thôi nha

a) ta có <Cchung; <H=<A=90

b) ap 1 dung dinh ly Py ta go voi ▲ABC vuong tai A thì BC=10 cm

ta có ▲ABC dồng dang ▲HAC ta có:

\(\frac{HC}{AC}=\frac{AC}{BC}\)

\(\Rightarrow AC^2=HC.BC\)

\(\Rightarrow HC=8^2:10=6,4cm\)

c)xl nha câu c thì mình cm sắp ra rùi bạn suy nghi tiếp nha

cm ▲ABD dong dang ▲HBI (<A=<H=90; B1=<B2)

\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\)

\(\Rightarrow AB.BI=BD=HB\)

bây giờ thì bạn cm HB=HC(mình chỉ biết tới đây)

thì suy ra dược điều đó

29 tháng 3 2018

a)   Xét   \(\Delta ABC\) và   \(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\widehat{ABC}=\widehat{HAC}\)  do cùng phụ với góc BAH )

suy  ra:    \(\Delta ABC~\Delta HAC\)

b)  Áp dụng định lý Pytago ta có:

    \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

  Áp dụng hệ thức lượng ta có:

 \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm

\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm

  \(BH=BC-HC=10-6,4=3,6\)cm

14 tháng 3 2021

undefined

undefined

undefined

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

DO đó: ΔABH=ΔACH

b: BH=CH=BC/2=3cm

=>AH=4(cm)

c: Xét ΔABC có

H là trung điểm của BC

HM//AC

Do đó: M là trung điểm của AB

12 tháng 3 2022

undefined

undefined

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

30 tháng 3 2018

a)  Xét   \(\Delta HBA\) và    \(\Delta ABC\)  có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{ABC}\)    CHỤNG

suy ra:     \(\Delta HBA~\Delta ABC\)

b)   Áp dụng định lý Pytago vào tam giác vuông  ABC  ta có:

          \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)

\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm

     Áp dụng hệ thức lượng trong tam giác vuông ta có:

            \(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)

           \(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)

30 tháng 3 2018

@@ câu c sao bạn?