2.So Sánh
\(\frac{x-y}{x+y}\)Và \(\frac{x^2-y^2}{x^2+y^2}\) Với x > y> 0
B, (3+1)(32+1)(34+1)(38+1) Và 316+1
MONG MỌI NGƯỜI GIÚP MK
MÌNH CẢM ƠN Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)
\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)
\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)
\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)
\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)
\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:
\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)
\(\Rightarrow yz=5xy\Rightarrow z=5x\)
Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)
\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)
Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)
\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Xét bất đẳng thức phụ: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)(*)
(*)\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\)*đúng với mọi x > 0*
Áp dụng tương tự rồi cộng vế theo vế, ta được: \(A\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}-\frac{y}{3}=\frac{y^2-x^2}{3^2-2^2}=\frac{20}{5}=4\)
\(=>\hept{\begin{cases}\frac{x}{2}=4\\\frac{y}{3}=4\end{cases}}=>\hept{\begin{cases}x=8\\y=12\end{cases}}\)
x+1/y và y+1/x là các số nguyên
=> (x+1/y).(y+1/x) là số nguyên
<=> xy+1/xy+2 là số nguyên
<=> xy+1/xy là số nguyên
<=> (xy+1/xy)^2 là số tự nhiên
<=> x^2y^2+1/x^2y^2+2 là số tự nhiên
=> x^2y^2+1/x^2y^2 là số nguyên
=> ĐPCM
k mk nha
\(A=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ A=-2\cdot\dfrac{1}{2}\left(-100\right)=100\)
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5
A) Với \(x>y>0\),ta có: \(x^2+y^2< x^2+y^2+2xy=\left(x+y\right)^2\Rightarrow\frac{1}{x^2+y^2}>\frac{1}{\left(x+y\right)^2}\)
Xét: \(\frac{x^2-y^2}{x^2+y^2}>\frac{x^2-y^2}{\left(x+y\right)^2}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x-y}{x+y}\)--->ĐPCM
B) \(3^{16}+1=\left(3^{16}-1\right)+2=\left(3^8+1\right)\left(3^8-1\right)+2\)
\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)+2\)
\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)+2\)
\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)+2\)
\(>\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)--->ĐPCM