\(\frac{1}{x-1}-\frac{x^3-1}{x^2+1}\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tiếp
\(=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\left(\frac{x^2+x+1}{2x+1}\right)=\left(\frac{x^2+x+1}{x^2-1}\right)=1+\frac{x+2}{x^2-1}\)
a) ĐKXĐ: \(x\ne-1;x\ne2\)
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
⇔\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(x-2-5x-5+15=0\)
⇔\(-4x+8=0\)
⇔\(-4x=-8\)
⇔\(x=\frac{-8}{-4}=2\)(loại)
Vậy: x không có giá trị
b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)
Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
⇔\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)
⇔\(x-3-10x+15=0\)
⇔\(-9x+12=0\)
⇔\(-9x=-12\)
⇔\(x=\frac{-12}{-9}=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
c) ĐKXĐ:\(x\ne3;x\ne1\)
Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)
⇔\(\frac{6}{x-1}-\frac{8}{x-3}=0\)
⇔\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)
⇔\(6\left(x-3\right)-8\left(x-1\right)=0\)
⇔6x-18-8x+8=0
⇔-2x-10=0
⇔-2(x+5)=0
Vì 2≠0 nên x+5=0
hay x=-5
Vậy: x=-5
a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)
<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1
<=> x2+x+1 - 3x2 = 2x(x-1)
<=>x2+x+1 - 3x2 = 2x2-2x
<=>x2-3x-1=0( đoạn này làm nhanh nhé)
<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0
<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0
<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0
\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)
b) pt... đkxđ x khác 1;2;3
<=> 3(x-3) +2(x-2)=x-1
<=> 3x-9 +2x-4 = x-1
<=> 4x= 12
<=> x=3 ( ko thỏa đk)
vậy pt vô nghiệm
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
<=> x2+2x-x+2=2
<=> x2+x=2-2
<=> x2+x=0
<=>x(x+1)=0
<=>x=0 hoặc x+1=0
<=>x=0 hoặc x = -1
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
<=>\(\frac{1.x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
<=> x-3 =10x-15
<=> x-10x= -15+3
<=> -9x = -12
<=> x = \(\frac{-12}{-9}\)
<=> x = \(\frac{4}{3}\)
\(\frac{1}{x-1}-\frac{x^3-1}{x^2+1}\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)
\(=\frac{1}{x-1}-\frac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+1}\left(\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(1-x\right)\left(1+x\right)}\right)\)
\(=\frac{1}{x-1}-\frac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+1}.\frac{\left(1+x\right)+\left(1-x\right)}{\left(1-x\right)^2\left(1+x\right)}\)
\(=\frac{1}{x-1}-\frac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+1}.\frac{2}{\left(1-x\right)^2\left(1+x\right)}\)
\(=\frac{1}{x-1}-\frac{\left(x^2+x+1\right).2}{\left(x^2+1\right)\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(x^2+1\right)\left(1+x\right)+2\left(x^2+x+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^3+3x^2+3x+3}{\left(x^2+1\right)\left(x^2-1\right)}\)