tìm d' là ảnh của d với
a) \(d:x-3y+5=0\); \(\alpha=60^o\)
b) \(d:2x-y+6=0\); \(\alpha=45^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)
a. \(d//d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne2\end{matrix}\right.\)
b. \(d\cap d_1\Leftrightarrow-2\ne1-m\Leftrightarrow m\ne3\)
c. \(d=d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow m=3\\ 2,\Leftrightarrow\left\{{}\begin{matrix}-2\ne1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ne2\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
a: Để hàm số đồng biến thì 2m-3>0
hay \(m>\dfrac{3}{2}\)
Để hàm số nghịch biến thì 2m-3<0
hay \(m< \dfrac{3}{2}\)
b: Thay x=2 và y=5 vào hàm số, ta được:
\(\left(2m-3\right)\cdot2+4=5\)
\(\Leftrightarrow2m-3=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{7}{2}\)
hay \(m=\dfrac{7}{4}\)
a) Gọi \(M\left(a;0\right)\) là giao điểm của (D) với trục Ox
\(M\in\left(D\right)\Rightarrow0=\dfrac{1}{7}a+\dfrac{3}{7}\Leftrightarrow a=-3\)
Vậy \(M\left(-3;0\right)\)
b) Gọi \(N\left(0;a\right)\) là giao điểm của (D) là trục Oy
\(N\in\left(D\right)\Rightarrow a=\dfrac{1}{7}.0+\dfrac{3}{7}=\dfrac{3}{7}\)
Vậy \(N\left(0;\dfrac{3}{7}\right)\)
c) \(A\left(2023;a\right)\in\left(D\right)\Rightarrow a=\dfrac{1}{7}.2023+\dfrac{3}{7}\Leftrightarrow a=\dfrac{2026}{7}\)
Vậy \(A\left(2023;\dfrac{2026}{7}\right)\)
d) \(B\left(a;-2023\right)\in\left(D\right)\Rightarrow-2023=\dfrac{1}{7}a+\dfrac{3}{7}\Leftrightarrow a=-14164\)
Vậy \(B\left(-14164;-2023\right)\)
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
Phép uay ua tâm O?
Phương pháp để làm dạng này, lấy \(K\left(x_1;y_1\right),I\left(x_2;y_2\right)\in\left(d\right)\) =>\(K'\left(x_1';y_1'\right);I'\left(x_2';y_2'\right)\) là ảnh của K' qua phép quay tâm O góc uay alpha. Khi đó \(K',I'\in\left(d'\right)\)
Áp dụng biểu thức tọa độ:
\(\left\{{}\begin{matrix}x_1'=x_1\cos\alpha-y_1\sin\alpha\\y_1'=x_1\sin\alpha+y_1\cos\alpha\end{matrix}\right.\)
Giờ ta sẽ áp dụng vô bài
Lấy \(K\left(1;2\right)\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}x_K'=1.\cos60^0-2.\sin60^0=\frac{\sqrt{3}}{2}-1\\y_K'=1.\sin60^0+2.\cos60=\frac{1}{2}+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow K'\left(\frac{\sqrt{3}}{2}-1;\frac{1}{2}+\sqrt{3}\right)\)
\(I\left(4;3\right)\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}x_I'=4.\cos60^0-3\sin60^0=2\sqrt{3}-\frac{3}{2}\\y_I'=4\sin60^0+3\cos60^0=2+\frac{3\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow I'\left(2\sqrt{3}-\frac{3}{2};2+\frac{3\sqrt{3}}{2}\right)\)
Bạn tự làm nốt nha, giờ chỉ cần viết phương trình đt (d') đi ua 2 điểm K' và I' thôi. Cách chứng minh công thức kia tui chưa biết chứng minh, bởi tui mới đọc sơ sơ dạng này :( Để bao giờ tìm hiểu thêm