K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

Phép uay ua tâm O?

Phương pháp để làm dạng này, lấy \(K\left(x_1;y_1\right),I\left(x_2;y_2\right)\in\left(d\right)\) =>\(K'\left(x_1';y_1'\right);I'\left(x_2';y_2'\right)\) là ảnh của K' qua phép quay tâm O góc uay alpha. Khi đó \(K',I'\in\left(d'\right)\)

Áp dụng biểu thức tọa độ:

\(\left\{{}\begin{matrix}x_1'=x_1\cos\alpha-y_1\sin\alpha\\y_1'=x_1\sin\alpha+y_1\cos\alpha\end{matrix}\right.\)

Giờ ta sẽ áp dụng vô bài

Lấy \(K\left(1;2\right)\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}x_K'=1.\cos60^0-2.\sin60^0=\frac{\sqrt{3}}{2}-1\\y_K'=1.\sin60^0+2.\cos60=\frac{1}{2}+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow K'\left(\frac{\sqrt{3}}{2}-1;\frac{1}{2}+\sqrt{3}\right)\)

\(I\left(4;3\right)\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}x_I'=4.\cos60^0-3\sin60^0=2\sqrt{3}-\frac{3}{2}\\y_I'=4\sin60^0+3\cos60^0=2+\frac{3\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow I'\left(2\sqrt{3}-\frac{3}{2};2+\frac{3\sqrt{3}}{2}\right)\)

Bạn tự làm nốt nha, giờ chỉ cần viết phương trình đt (d') đi ua 2 điểm K' và I' thôi. Cách chứng minh công thức kia tui chưa biết chứng minh, bởi tui mới đọc sơ sơ dạng này :( Để bao giờ tìm hiểu thêm

12 tháng 11 2021

\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)

12 tháng 12 2021

a. \(d//d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne2\end{matrix}\right.\)

b. \(d\cap d_1\Leftrightarrow-2\ne1-m\Leftrightarrow m\ne3\)

c. \(d=d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\)

12 tháng 12 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow m=3\\ 2,\Leftrightarrow\left\{{}\begin{matrix}-2\ne1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ne2\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

12 tháng 12 2021

a: để hai đường thẳng song song thì 1-m=-2

hay m=3

a: Để hàm số đồng biến thì 2m-3>0

hay \(m>\dfrac{3}{2}\)

Để hàm số nghịch biến thì 2m-3<0

hay \(m< \dfrac{3}{2}\)

b: Thay x=2 và y=5 vào hàm số, ta được:

\(\left(2m-3\right)\cdot2+4=5\)

\(\Leftrightarrow2m-3=\dfrac{1}{2}\)

\(\Leftrightarrow2m=\dfrac{7}{2}\)

hay \(m=\dfrac{7}{4}\)

27 tháng 8 2021

các phần khác đâu bạn??

 

8 tháng 8 2023

a) Gọi \(M\left(a;0\right)\) là giao điểm của (D) với trục Ox

\(M\in\left(D\right)\Rightarrow0=\dfrac{1}{7}a+\dfrac{3}{7}\Leftrightarrow a=-3\)

Vậy \(M\left(-3;0\right)\)

b) Gọi \(N\left(0;a\right)\) là giao điểm của (D) là trục Oy

\(N\in\left(D\right)\Rightarrow a=\dfrac{1}{7}.0+\dfrac{3}{7}=\dfrac{3}{7}\)

Vậy \(N\left(0;\dfrac{3}{7}\right)\)

c) \(A\left(2023;a\right)\in\left(D\right)\Rightarrow a=\dfrac{1}{7}.2023+\dfrac{3}{7}\Leftrightarrow a=\dfrac{2026}{7}\)

Vậy \(A\left(2023;\dfrac{2026}{7}\right)\)

d) \(B\left(a;-2023\right)\in\left(D\right)\Rightarrow-2023=\dfrac{1}{7}a+\dfrac{3}{7}\Leftrightarrow a=-14164\)

Vậy \(B\left(-14164;-2023\right)\)

8 tháng 8 2023

loading...  

a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)

c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6

hay m<>3

 

3 tháng 8 2019

a) Vô nghiệm

b) vô nghiệm

c)m=0

d)m=0

a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)

c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6

hay m<>3

 

11 tháng 10 2021

a: Thay x=0 và y=0 vào (d), ta được:

m+1=0

hay m=-1