Cho a,b thỏa mãn: a+b = 4, ab = 2
Tính a2 + b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)
\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)
\(\Rightarrow a^2+b^2\le8\)
\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)
\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)
\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)
\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)
\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )
\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )
Do a,b >0
Nên áp dụng BDT Cô Si :
\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)
Do đó (*) luôn đúng
Vậy ta chứng minh đc bài toán
Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)
a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).
Bất đẳng thức trên tương đương :
\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1
\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1
\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0
\(\Leftrightarrow\)- \(\dfrac{b}{a^2+b}\)- \(\dfrac{a}{b^2+a}\)\(\le\)-1
\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)+ \(\dfrac{b}{a^2+b}\)\(\ge\)1
Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)+ \(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)
= \(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)
\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)
= \(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1
Vậy BĐT được chứng minh
Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1
Lời giải:
Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$
$\Rightarrow a^2+b^2\vdots p; ab\vdots p$
Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$
Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$
$\Rightarrow b\vdots p$
$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý
Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$
a2 + b2
= a2 + 2ab + b2 - 2ab
= ( a + b )2 - 2ab
= 42 - 2.2
= 16 - 4 = 12
Bài làm :
ab = 2 => 2ab=4 ; a+b=4 => (a+b)2 = 16
Ta có :
\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab=a^2+b^2\)
\(\Rightarrow a^2+b^2=\left(a+b\right)^2-2ab=16-4=12\)
Vậy a2 + b2 = 12