K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm :

\(a,\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow\orbr{\begin{cases}x+2=3\\x+2=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy x = 1 hoặc x = -5 .

18 tháng 9 2020

a) Áp dụng hằng đẳng thức A2- B2=(A-B)(A+B) ta có:

\(\left(x+2\right)^2-9=\left(x+2\right)^2-3^2=\left(x+2-3\right)\left(x+2+3\right)\)

\(=\left(x-1\right)\left(x+5\right)\)\(\Rightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)

Vậy x=1 hoặc x=-5

b) Ta có: \(\left(x+2\right)^2-x^2+4=x^2+4x+4-x^2+4=4x+8\)

\(\Rightarrow4x+8=0\Rightarrow\orbr{\begin{cases}x=\frac{-8}{4}\\x=-2\end{cases}}\)

7 tháng 7 2023

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

26 tháng 12 2021

a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)

f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)

5 tháng 9 2021

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

5 tháng 9 2021

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

26 tháng 8 2018

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=3-2=1\)

26 tháng 8 2018

a) ( x + 2 )2 = 9

=> ( x + 2 ) 2 = 9

=> ( x + 2 )2 = 32

=> x + 2 = + 3

=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

Vậy x = -1; 5

b) ( x + 2 )2 - x2 + 4 = 0

=> ( x + 2 )2 - ( x2 - 4 ) = 0

=> ( x + 2 )2 - ( x + 2 ) ( x  - 2 ) = 0

=> ( x + 2 ) ( x + 2 -  x + 2 ) = 0

=> ( x + 2 ) . 4 = 0

=> x + 2 = 0 

=> x = - 2

Vậy x = - 2 

c)  5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 )  = - 10

=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10

=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10

=> - 70x + 280 = - 10

=> - 70x = - 290

=> x = \(\frac{29}{7}\)

Vậy x = \(\frac{29}{7}\)

d)  x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3

=> x ( x2 - 25 ) - ( x3 - 8 ) = 3

=> x3 - 25x - x3 + 8 = 3

=> - 25x + 8 = 3

=> - 25x = -5

=> x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

21 tháng 4 2017

undefinedundefined

22 tháng 4 2017

cop mạng à

a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

=>x+3=0 hoặc x-4=0

=>x=-3 hoặc x=4

e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)

8 tháng 2 2022

a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)

c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e, tương tự d 

f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)

`@` `\text {Ans}`

`\downarrow`

`a,`

`(x - 2)(x - 3) =0`

`<=>`\(\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy, `S = {2; 3}`

`b,`

`x^2 - 5x = 0`

`<=> x(x - 5) = 0`

`<=>`\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=0+5\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Vậy, `S = {0; 5}`

`c,`

`x^2 - 9 = 0`

`<=> x^2 = 0 + 9`

`<=> x^2 = 9`

`<=> x^2 = (+-3)^2`

`<=> x = +-3`

Vậy, `S = {3; -3}`

`d,`

`4x^2 - 25 = 0`

`<=> 4x^2 = 25`

`<=> x^2 = 25/4`

`<=> x^2 = (+-5/2)^2`

`<=> x = +-5/2`

Vậy,` S = {5/2; -5/2}.`

a: =>x-2=0 hoặc x-3=0

=>x=2 hoặc x=3

b: =>x(x-5)=0

=>x=0 hoặc x=5

c: =>(x-3)(x+3)=0

=>x=3 hoặc x=-3

d: =>(2x-5)(2x+5)=0

=>x=5/2 hoặc x=-5/2