cho a và b là hai số tự nhiên biết b>a. a chia 4 dư 3. CM b2-a2 chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = 4x + 1 và b = 4y + điều kiện b ≥ a .
Biểu diễn b 2 – a 2 = 8 ( 2 y 2 + 3 y – 2 x 2 – x + 1 ) .
A số chia 4 dư 3 nên a là số lẻ
Mà mọi số lẻ bình phương chia 4 đều dư 1
nên a bình phương chia 3 dư 1
b bình phương
nếu b chẵn thì b bình phương chia hết cho 4
\(a^2-b^2:4\) dư 1
nếu b lẻ thì bình phương chia 4 dư 1
\(a^2-b^2⋮4\)
Chỉ chứng minh được \(a^2-b^2⋮4\) với b lẻ
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5