Tìm x:
3x +25= 26 . 2 + 2 .3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết
a) (x-1/2)^2=4
b) 10/1/2-(x+1/3)^2=1/1/2
c) (x-1/5)^2+17/25=26/25
d) 1/5/27+(3x-7/9)^3=24/27
a) (x - 1/2)2 = 4
<=> (x - 1/2)2 = 22
<=> x - 1/2 = -2; 2
<=> x - 1/2 = 2 hoặc x - 1/2 = -2
x = 2 + 1/2 x = -2 + 1/2
x = 5/2 x = -3/2
=> x = 5/2 hoặc x = -3/2
b) 10/1/2 - (x + 1/3)2 = 1/1/2
<=> -(x + 1/3)2 = 1/1/2 - 10/1/2
<=> -(x + 1/3)2 = 1/2 - 5
<=> -(x + 1/3)2 = -5.2 + 1/2
<=> -(x + 1/3)2 = -9/2
<=> (x + 1/3)2 = 9/2
<=> x + 1/3 = \(\sqrt{\frac{9}{2}}\) hoặc x + 1/3 = \(-\sqrt{\frac{9}{2}}\)
x = \(\frac{3\sqrt{2}}{2}\) - 1/3 x = \(-\frac{3\sqrt{2}}{2}\) -1/3
=> x = \(\frac{3\sqrt{2}}{2}\) - 1/3 hoặc x = \(-\frac{3\sqrt{2}}{2}\) -1/3
c) (x - 1/5)2 + 17/25 = 26/25
<=> (x - 1/5)2 = 26/25 - 17/25
<=> (x - 1/5)2 = (3/5)2
<=> x - 1/5 = -3/5; 3/5
<=> x - 1/5 = 3/5 hoặc x - 1/5 = -3/5
x = 3/5 + 1/5 x = -3/5 + 1/5
x = 4/5 x = -2/5
=> x = 4/5 hoặc x = -2/5
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
2: =>(3x-7)^2=25/144=(5/12)^2
=>3x-7=5/12 hoặc 3x-7=-5/12
=>3x=5/12+7=89/12 hoặc 3x=7-5/12=79/12
=>x=89/36 hoặc x=79/36
3:Sửa đề: |2x-3|=|x+1|
=>2x-3=x+1 hoặc 2x-3=-x-1
=>x=4 hoặc 3x=2
=>x=2/3 hoặc x=4
4: =>3x+1=5 hoặc 3x+1=-5
=>3x=4 hoặc 3x=-6
=>x=-2 hoặc x=4/3
1: =>\(2x-7=\sqrt[3]{\dfrac{26}{63}}\)
=>\(2x=\sqrt[3]{\dfrac{26}{63}}+7\)
=>\(x=\dfrac{1}{2}\cdot\left(\sqrt[3]{\dfrac{26}{63}}+7\right)\)
`Answer:`
a. \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{41}{4}+\frac{3}{4}\\2x=-\frac{41}{4}+\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=11\\2x=-\frac{19}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11:2\\x=-\frac{19}{2}:2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=-\frac{19}{4}\end{cases}}\)
b. \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{1}{5}\\x=-\frac{3}{5}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{4}{5}\end{cases}}\)
c. \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}-\left(-\frac{24}{27}\right)\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Leftrightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Leftrightarrow3x=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{1}{9}:3\)
\(\Leftrightarrow x=\frac{1}{27}\)
Bài 6:
\(21,251+6,058+0,749+1,042\)
\(=\left(21,251+0,749\right)+\left(6,058+1,042\right)\)
\(=22+7,1\)
\(=29,1\)
___________________
\(1,53+5,309+12,47+5,691\)
\(=\left(1,53+12,47\right)+\left(5,309+5,691\right)\)
\(=14+11\)
\(=25\)
5:
a: =>x/17=5/17
=>x=5
b; =>6+x=7/11*33=21
=>x=15
c: \(\dfrac{12+x}{43-x}=\dfrac{2}{3}\)
=>3x+36=86-2x
=>5x=50
=>x=10
d: \(\dfrac{x}{5}< \dfrac{3}{7}\)
=>x<3/7*5
=>x<15/7
f: 15/26+x/16=46/52
=>x/16=23/26-15/26=8/26=4/13
=>x=4/13*16=64/13
\(3^x+25=26.2+2.3\)
\(3^x+25=52+6\)
\(3^x+25=58\)
\(3^x=58-25\)
\(3^x=33\)
vậy ko tìm được giá trị x
\(x\in\varnothing\)