K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2020

\(A=\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{ab}\)\(\ge\frac{25}{4a+ab}\)\(=\frac{25}{a\left(b+4\right)}\)\(\ge\frac{25}{\frac{1}{4}\left(a+b+4\right)^2}\)\(=1\)

\(A_{min=1}\)\(khi\){ a = 5 

                            b = 1

15 tháng 9 2020

Lần đầu tiên làm toán lớp 8 , có gì sai sót mong bạn chỉ ra hộ mình

13 tháng 1 2017

\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)

Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).

Đẳng thức xảy ra khi \(a=b=c=2\)

Vậy \(minP=42\)

2 tháng 8 2018

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

   \(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra <=>  \(a=1;\)\(b=2\)

Vậy MIN P = 11  Khi a = 1;   b = 2

2 tháng 8 2018

Bài này là BĐT cosi

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)

\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lần sau bạn chú ý viết đề bằng công thức toán

Lời giải:

$P=1-\frac{1}{a^2}-\frac{1}{b^2}+\frac{1}{a^2b^2}$
$=1-\frac{a^2+b^2}{a^2b^2}+\frac{1}{a^2b^2}$

$=1-\frac{(a+b)^2-2ab}{a^2b^2}+\frac{1}{a^2b^2}$
$=1-\frac{1-2ab}{a^2b^2}+\frac{1}{a^2b^2}$

$=1+\frac{2}{ab}$

Áp dụng BĐT Cô-si:

$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{ab}\geq 8$

$\Rightarrow P=1+\frac{2}{ab}\ge 9$

Vậy $P_{\min}=9$ khi $a=b=\frac{1}{2}$