Tính (dùng hằng đẳng thức)
a) (A + B + C)2
b) (A + B - C)2
c) (A - B - C)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
a) \(\left(a^2+b+c\right)^2\)
\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)
\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)
b) \(\left(a+b+c\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ca+2bc+c^2\)
a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)
c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)
\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)
a) ( A + B + C )2
= [ ( A + B ) + C ]2
= ( A + B )2 + 2( A + B )C + C2
= A2 + B2 + C2 + 2AB + 2BC + AC
b) ( A + B - C )2
= [ ( A + B ) - C ]2
= ( A + B )2 - 2( A + B )C + C2
= A2 + B2 + C2 + 2AB - 2BC - 2AC
c) ( A - B - C )2
= [ ( A - B ) - C ]2
= ( A - B )2 - 2( A - B )C + C2
= A2 + B2 + C2 - 2AB + 2BC - 2AC
Bài làm :
a) ( A + B + C )2
= [ ( A + B ) + C ]2
= ( A + B )2 + 2( A + B )C + C2
= A2 + B2 + C2 + 2AB + 2BC + AC
b) ( A + B - C )2
= [ ( A + B ) - C ]2
= ( A + B )2 - 2( A + B )C + C2
= A2 + B2 + C2 + 2AB - 2BC - 2AC
c) ( A - B - C )2
= [ ( A - B ) - C ]2
= ( A - B )2 - 2( A - B )C + C2
= A2 + B2 + C2 - 2AB + 2BC - 2AC