K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

Giải phương trình nghiệm nguyên \(2^x+3^y=z^2\)Nếu y=0 thì \(2^x=\left(z-1\right)\left(z+1\right)\)           Nếu \(x=0\Rightarrow\left(z-1\right)\left(z+1\right)=1\Rightarrow pt\) vô nghiệm.           Nếu \(x\ne0\Rightarrow\left(z-1\right)\left(z+1\right)\) chẵn           Đặt \(z-1=2m\Rightarrow z+1=2m+2\Rightarrow2^x=\left(z-1\right)\left(z+1\right)=4m\left(m+1\right)\)           Bên trái là lũy thừa cơ số 2,vế phải là tích...
Đọc tiếp

Giải phương trình nghiệm nguyên \(2^x+3^y=z^2\)

Nếu y=0 thì \(2^x=\left(z-1\right)\left(z+1\right)\)

           Nếu \(x=0\Rightarrow\left(z-1\right)\left(z+1\right)=1\Rightarrow pt\) vô nghiệm.

           Nếu \(x\ne0\Rightarrow\left(z-1\right)\left(z+1\right)\) chẵn

           Đặt \(z-1=2m\Rightarrow z+1=2m+2\Rightarrow2^x=\left(z-1\right)\left(z+1\right)=4m\left(m+1\right)\)

           Bên trái là lũy thừa cơ số 2,vế phải là tích của 4 cho tích của 2 số tự nhiên liên tiếp nên dễ dàng suy ra m=1 suy ra x=3;z=3

Nếu \(y\ne0\)

           Nếu x lẻ ta có:\(2^x\equiv2\left(mod3\right)\Rightarrow2^x+3^y\equiv2\left(mod3\right)\Rightarrow z^2\equiv2\left(mod3\right)\) ( vô lý )

           Nếu x=0 ta có:\(3^y=\left(z-1\right)\left(z+1\right)\Rightarrow z=2\Rightarrow y=1\)

           Nếu x khác 0 ta có x là số chẵn nên \(2^x\equiv0\left(mod4\right);z^2\equiv0;1\left(mod4\right)\Rightarrow3^y\equiv1\left(mod4\right)\Rightarrow y=2k\)

           Ta có:\(2^x=z^2-\left(3^k\right)^2=\left(z-3^k\right)\left(z+3^k\right)\)

           Khi đó \(\left(z-3^k\right)\left(z+3^k\right)=2^u\cdot2^v\Rightarrow\hept{\begin{cases}z-3^k=2^u\\z+3^k=2v\end{cases}}\Rightarrow2\cdot3^k=2^u\left(2^{u-v}-1\right)\Rightarrow u=1\)

            \(\Rightarrow z-3^k=2\Rightarrow2^{v-1}-3^k=1\)

            \(3^k\equiv0\left(mod3\right)\Rightarrow2^{v-1}\equiv1\left(mod3\right)\Rightarrow v-1=2t\)

             \(pt\Leftrightarrow2^{2t}-3^k=1\Rightarrow3^k=\left(2^t-1\right)\left(2^t+1\right)\Rightarrow\hept{\begin{cases}2^t-1=3^{k_1}\\2^t+1=3^{k_2}\end{cases}}\)

             \(\Rightarrow3^{k_2}-3^{k_1}=2\Rightarrow3^{k_1}+2=3^{k_2}\Rightarrow k_1=0;k_2=1\Rightarrow z=5\Rightarrow x=4;y=2;z=5\)

Vậy bộ ba nghiệm (x,y,z) thỏa mãn là \(\left(3;0;3\right);\left(0;1;2\right);\left(4;2;5\right)\)

P/S:Bài giải phần đầu có sự trợ giúp của anh Nguyễn Nhất Huy ( giải nhất thi HSG Cấp Thành Phố vòng 1;được lên báo Toán học tuổi trẻ số 509  ),thanks a nhìu.Key đây nha ! Nhầm chỗ nào tự sửa nốt.

 

 

       

 

0
11 tháng 7 2021

Cái này là ngữ văn lớp 1 sao nhìn nó khó thế mình còn chẳng giải được

NV
17 tháng 9 2020

Nếu đề đúng thì cả 4 đáp án đều sai nên khẳng định là đề sai

Bạn nhìn lại tập hợp A, khả năng là sai đề tại đấy :)

29 tháng 10 2016

chỗ nào không cứ hỏi mình nhébanhqua

Hoán vị, chỉnh hợp, tổ hợp