4444 : 4=...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 4 chia hết cho 4 nên 44 chia hết cho 4
Vì 44 chia hết cho 4 nên 4444 chia hết cho 4
Vì 444 chia hết cho 4 nên 444444 chia hết cho 4
Vì 4444 chia hết cho 4 nên 44444444 chia hết cho 4
Suy ra 44+4444+444444+44444444 chia hết cho 4
mà 15 chia 4 dư 3
Nên E=44+4444+444444+44444444 +15 chia 4 dư 3
nhưng SCP chia 4 dư 0 hoặc 1
Do đó E không là SCP
Vậy ...........
4^4=4^2+4^2
44^44=44^4+44^11
444^444= 444^4+444^111
4444^4444=4444^4+4444^1111
Số 15 chia 4 dư 3 nên số \(4^4+44^{44}+444^{444}+4444^{4444}+15\) chia 4 dư 3. Do đó không thể là số chính phương. (Một số chính phương khi chia cho 4 chỉ dư 0,1.
Lời giải:
$4^4+44^{44}+444^{444}+4444^{4444}$ chia hết cho $4$ (do bản thân mỗi số hạng đều chia hết cho $4$
$15$ chia $4$ dư $3$
$\Rightarrow n$ chia $4$ dư $3$.
Ta biết rằng 1 số chính phương khi chia 4 chỉ có thể có dư là $0$ hoặc $1$.
$\Rightarrow n$ không phải scp.
Ta thấy: \(A=4^4+44^{44}+444^{444}+4444^{4444}+2007\)
\(=4^4+44^{44}+444^{444}+4444^{4444}+4.501+3\)
\(=4.k+3\)
Vì số chính phương không thể có dạng \(4k+3\)nên A không phải số chính phương
4 chia hết cho 4
44 chia hết cho 4 => 4444 chia hết cho 4
444 chia hết cho 4 => 444444 chia hết cho 4
4444 chia hết cho 4 => 44444444 chai hết cho 4
=> 44 + 4444 + 444444 + 44444444 chia hết cho 4
Vì 15 chia cho 4 dư 3 , mà số chính phương chia cho 4 chỉ có số dư là 0 hoặc 1
=> n không phải là số chính phương
Bài này ta làm như sau:
Câu a) ta có 4^222= (2^2)222 = 2^(2.222) = (-2)^444 vậy suy ra 4^(222) = (-2)^444
Câu b) Bài toán yêu cầu ta so sánh: (-3333)^4444 và 4444^3333
Ta có: (-3333)^4444 = (3333)^4444= (3.1111)^(4.1111) =[(3.1111)^4]^1111
Mặt khác ta có: 4444^3333= (4.1111)^(3.1111) =[(4.1111)^3]^1111
Đến đây ta so sánh A=(3.1111)^4 với B= (4.1111)^3
A= (3^4).(1111).(1111)^3
B=(4^3).(1111)^3
Đến đây ta lại so sánh (3^4).1111 với 4^3
Dễ dàng nhận thấy (3^4).1111 > 4^3 =64
Vậy kết luận 3333^4444 > 4444^3333
Bài c) Ta có 4^30 =(4^3)^10= 64 ^10 = (4^10).(2^10).(8^10)
Ta lại có: (3).(24)^10 =(3).(3^10).(8^10)
Đến đây ta lại so sánh:(4^10).(2^10) với (3).(3^10)
Dễ dàng nhận thấy 4^10 > 3^10 và 2^10 >3
Nên suy ra (4^10).(2^10) > (3). (3^10)
vậy 4^30 > (3).(24^10)
tick với đó
4444 : 4 = 1111
THANKS