K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

GHJHGJYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

13 tháng 9 2020

\(x_1=\frac{-\left(m-1\right)+\sqrt{\left(m-1\right)^2+8}}{2a}\)

\(x_2=\frac{-\left(m-1\right)-\sqrt{\left(m-1\right)^2+8}}{2a}\)

13 tháng 9 2020

viet bình thường thôi bạn :)

NV
3 tháng 5 2021

a. Bạn tự giải

b. 

Pt có 2 nghiệm phân biệt khi:

\(\Delta'=\left(m-3\right)^2-m^2>0\)

\(\Leftrightarrow-6m+9>0\)

\(\Leftrightarrow m< \dfrac{3}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2\end{matrix}\right.\)

23 tháng 7 2021

còn cái nịt

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

loading...  loading...  

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)