Cho biểu thức A = x2 -1/3x + 1
a) Chứng tỏ rẳng A>0 với mọi x
b) Tìm GTNN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Bài 1:
a: \(\Leftrightarrow2x^2-4x-2x^2-6x=20\)
=>-10x=20
=>x=-2
b: \(\Leftrightarrow\left(x-4\right)\left(3x+12\right)=0\)
=>x=-4 hoặc x=4
c: \(\Leftrightarrow4x^2+4x+1=0\)
=>(2x+1)^2=0
=>x=-1/2
d: \(\Leftrightarrow x\left(5x+1\right)=0\)
=>x=0 hoặc x=-1/5
e: =>(x-2)(3x-1)=0
=>x=1/3 hoặc x=2
a)
XÉT \(\Delta=4\left(m+1\right)^2-8m=4m^2+8m+4-8m=4m^2+4\ge0+4=4>0\)
=> \(\Delta>0\)
=> PT CÓ 2 NGHIỆM PHÂN BIỆT VỚI MỌI GIÁ TRỊ m.
b)
\(\Rightarrow\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)\left(1\right)\\x_1.x_2=2m\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4\left(m+1\right)^2\)
<=> \(x_1^2+x_2^2+4m=4m^2+8m+4\)
<=> \(x_1^2+x_2^2=4m^2+4m+4=4m^2+4m+1+3=\left(2m+1\right)^2+3\ge3\forall m\)
=> \(x_1^2+x_2^2\ge3\)
DẤU "=" XẢY RA <=> \(\left(2m+1\right)^2=0\Leftrightarrow m=-\frac{1}{2}\)
a) \(\Delta^'=\left(m+1\right)^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)
Vậy phương trình có 2 nghiệm phân biệt \(x_1;x_2\forall m\)
b) Theo định lý Vi-et: \(\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)=-2m-2\\x_1x_2=2m\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-2m-2\right)^2-2.2m\)
\(=4m^2+8m+4-4m\)
\(=4m^2+4m+4=\left(2m+1\right)^2+3\ge3\)
Dấu "=" xảy ra khi \(m=\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=-1\end{cases}}\)
Đến đây thì bạn tìm ra \(x_1;x_2\)là nghiệm của \(x^2+x-1=0\)và kết luận GTNN.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )