K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

\(\left(1\right)\)Tại x=-1, ta có: \(P=3x^2+5=3\left(-1\right)^2+5=3+5=8\)

Tại x=0, ta có: \(P=3x^2+5=3.0^2+5=0+5=5\)

Tại x=3, ta có: \(P=3x^2+5=3.3^2+5=3.9+5=27+5=32\)

(2) Ta có: \(P=3x^2+5\)mà  \(x^2\ge0\)với mọi x => 3x^2 \(\ge\)0 với mọi x 

Lại có 5 dương => P \(\ge\)0 hay đa thức P luôn dương với mọi giá trị của x

\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3

TH1 : Ta thay đa thức trên có x = -1

\(3.\left(-1\right)^2+5=3.1+5=8\)

TH2 : Ta thay đa thức trên có x = 0 

\(3.0^2+5=3.0.5=0\)

TH3 : Ta thay đa thức trên có x = 3

\(3.3^2+5=3.9+5=27+5=32\)

Ta KL đc : R luôn dương với mọi giá trị x 

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

12 tháng 3 2022

\(\Leftrightarrow8x^2+5=0\)

do 8x^2 >0; 5>0

\(\Rightarrow8x^2+5>0\forall x\)

a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2

=x^4y^2+x^2+1

Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3

b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y

=>A luôn dương với mọi x,y

15 tháng 10 2016

x4 - x3 + 3x2 - 2x + 2

= x4 - x3 + x2 + 2x2 - 2x + 2

= x2(x2 - x + 1) + 2(x2 - x + 1)

= (x2 + 2)(x2 - x + 1)

= (x2 + 2)(x2 - x + 1/4 + 3/4)

= (x2 + 2)[(x - 1/2)2 + 3/4]

x2 + 2 lớn hơn hoặc bằng 2

(x - 1/2)2 + 3/4 lớn hoăn hoặc bằng 3/4

(x2 + 2)[(x - 1/2)2 + 3/4] lớn hơn hoặc bằng 3/2 > 0 (đpcm)