K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:
PT $\Leftrightarrow 1+2\sin x\cos x=\sin x+1-2\sin ^2x$

$\Leftrightarrow 2\sin x\cos x-\sin x+2\sin ^2x=0$

$\Leftrightarrow \sin x(2\cos x-1+2\sin x)=0$

Nếu $\sin x=0\Rightarrow x=k\pi$ với $k$ nguyên.

Nếu $2\cos x-1+2\sin x=0$

$\Leftrightarrow 2\cos x=1-2\sin x$

$\Rightarrow 4\cos ^2x=1+4\sin ^2x-4\sin x$

$\Rightarrow 4(1-\sin ^2x)=1+4\sin ^2x-4\sin x$
$\Leftrightarrow 8\sin ^2x-4\sin x-3=0$

Đến đây thì đơn giản rồi vì là pt bậc 2 1 ẩn $\sin x$

DD
23 tháng 7 2021

\(y=\sqrt{3}cos2x+2sinxcosx-2\)

\(=\sqrt{3}cos2x+sin2x-2\)

Ta có: \(\left|\sqrt{3}cos2x+sin2x\right|\le\sqrt{\left(\sqrt{3}\right)^2+1^2}=2\)

Do đó \(-2\le\sqrt{3}cos2x+sin2x\le2\)

\(\Leftrightarrow-4\le\sqrt{3}cos2x+sin2x-2\le2\).

Ta có: \(\left|\sqrt{3}cosx-sinx\right|\le\sqrt{\left(\sqrt{3}\right)^2+\left(-1\right)^2}=2\)

Do đó \(-2\le\sqrt{3}cosx-sinx\le2\)

2 tháng 11 2023

d la sai

 

 

20 tháng 9 2018

Đáp án B

9 tháng 6 2016

đặt t=sinx+cosx và phải có đk của t

NV
7 tháng 10 2019

\(\Leftrightarrow1+2sinx.cosx-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow sin^2x+cos^2x+2sinx.cosx-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

9 tháng 10 2019

thank bạn nhiều

22 tháng 11 2018

 

 

loading...  loading...  loading...  loading...  loading...  loading...  

NV
17 tháng 8 2020

\(1+sinx-cos2x=0\)

\(\Leftrightarrow1+sinx-\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow sinx\left(1+2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(sin3x-sinx+cos2x=0\)

\(\Leftrightarrow2cos2x.sinx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)