một vật dao động điều hòa có phương trình x=10cos(ωt +π/3)cm.trong một chu kỳ dao động, khoảng thời gian mà tốc độ của vật v >căn3.vmax/2 là 0.5 sẽ. tìm khoảng thời gian ngắn kể từ khi vật dao động đến khi vật qua vị trí có độ lớn gia tốc cực đại??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tại \(t=0\) vật tại \(x=5\sqrt{3}\)
\(v>0\)
\Rightarrow \(s=4A+17-5\sqrt{3}\)
sử dung công thức
\(s=2A.\sin\left(\frac{\omega.t1}{2}\right)\)
\Rightarrow t1 = ?
vậy khoảng thời gian nhỏ nhất là \(t=T+t1\)
Trong một chu kỳ khoảng thời gian \(\left|v\right|\) <\(\frac{\sqrt{3}vmax}{2}\) => x=+ hoặc - A/2 vẽ lên hình ta thấy có 4 khoảng để thỏa mãn là từ A/2 đến biên (2 khoảng) và từ -A/2 đến biên (2 khoảng). Ta gọi mỗi đoạn là t.
Vậy ta có 0,4s= 4t =>t=0,1s=T/6 ( từ A/2 đến biên) nên T=0,6s.
Lúc t=0 thì vật ở vị trí x0 =5/2=A/2, v0 <0
Ở vị trí \(\left|a\right|\) =\(\frac{amax}{2}\) => x=+ hoặc trừ - A/2. Nhưng vì là khoẳng thời gian ngắn nên ta chọn -A/2 (A/2 đi theo chiều âm đến -A/2)
Vậy khoảng thời gian đó là \(\frac{T}{12}\) +\(\frac{T}{12}\) = 0,1S
Chọn D
+ Chu kỳ dao động:
+ Thời gian :
+ Do t = 0 => x = A/2, v < 0, trong thời gian T = T/6 = T/12+T/12, vật đi từ A/2 đến –A/2 và trong thời gian 2T vật đi được quãng đường 8A.
Vậy tổng quãng đường vật đi trong thời gian trên là 8A+ A= 9A= 54cm.
C ó sin α = b A cos α = a A ⇒ sin 2 α + cos 2 α = 1 ⇔ b 2 A 2 + a 2 A 2 = 1 ⇔ a 2 + b 2 = 100
\(\left|v\right|>\frac{\sqrt{3}}{2}v_{max}\Rightarrow\left[{}\begin{matrix}v>\frac{\sqrt{3}}{2}v_{max}\\v< -\frac{\sqrt{3}}{2}v_{max}\end{matrix}\right.\)
\(\Delta t=\frac{0,5}{4}=\frac{1}{8}\left(s\right)\) ;\(\Delta t=\frac{1}{\omega}arc\cos\left(\frac{\sqrt{3}}{2}\right)\Rightarrow\omega=\frac{4}{3}\pi\left(rad/s\right)\)
\(a_{max}=\omega^2A=\frac{160}{9}\pi^2\left(cm/s^2\right)\)
Tại thời điểm t=0, gia tốc của vật là: \(a=-\omega^2A\cos\frac{\pi}{3}=-\frac{160}{9}\pi^2.\frac{1}{2}\left(cm/s^2\right)\)
\(\Rightarrow a=-\frac{1}{2}a_{max}\)
\(\Rightarrow\Delta t_1=\frac{1}{\omega}arc\sin\left(\frac{1}{2}\right)=\frac{3}{4\pi}.\frac{\pi}{6}=\frac{1}{8}\left(s\right)\)
\(\Delta t_2=\frac{T}{4}=\frac{3}{2.4}=\frac{3}{8}\left(s\right)\)
\(\Rightarrow\Delta t=t_1+t_2=....\)
P/s: Check lại số má giùm em nha :)
Sao suy ra denta t =0.5:4=1/8 vậy ạ