Tìm giá trị nhỏ nhất của biểu thức T=\(\frac{\overline{ab}}{a+b}\)(a,b là chữ số, ab là số có 2 cs)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(T=\frac{ab}{a+b}\) ( ĐK : \(a;b\in N;0< a,b< 10\)
\(=\frac{10a+b}{a+b}\)
\(=1+\frac{9a}{a+b}\)
\(=1+\frac{9}{\frac{a+b}{a}}\)
\(=1+\frac{9}{1+\frac{b}{a}}\)
Để T đạt GTNN thì \(\frac{9}{1+\frac{b}{a}}\) đạt GTNN
\(\Rightarrow1+\frac{b}{a}\) đạt GTLN
\(\Rightarrow\) \(\frac{b}{a}\) đạt GTLN
\(\Rightarrow\) b lớn nhất ; a nhỏ nhất
\(\Rightarrow a=1;b=9\)
T=\(\frac{19}{1+9}=\frac{19}{10}=1,9\)
Vậy GTNN T = 1,9 khi và chỉ khi a = 1 ; b = 9
Thanks