giải phương trình
\(^{x^2-2x=2\sqrt{2x-3}-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
ĐK:\(x\ge\dfrac{5}{2}\)
Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow x=15\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x+7>=0\\-2x+3>=0\end{matrix}\right.\Leftrightarrow-\dfrac{7}{2}< =x< =\dfrac{3}{2}\)
PT\(\Leftrightarrow x^2-1+2\sqrt{2x+7}=2\sqrt{-2x+3}+4\)
=>\(\left(x-1\right)\left(x+1\right)+2\sqrt{2x+7}-6=2\sqrt{-2x+3}-2\)
=>\(\left(x-1\right)\left(x+1\right)+2\cdot\dfrac{2x+7-9}{\sqrt{2x+7}+3}=2\cdot\dfrac{-2x+3-1}{\sqrt{-2x+3}+1}\)
=>\(\left(x-1\right)\left(x+1\right)+\dfrac{4\left(x-1\right)}{\sqrt{2x+7}+3}-2\cdot\dfrac{-2\left(x-1\right)}{\sqrt{-2x+3}+1}=0\)
=>\(\left(x-1\right)\left(x+1+\dfrac{4}{\sqrt{2x+7}+3}+\dfrac{4}{\sqrt{-2x+3}+1}\right)=0\)
=>x-1=0
=>x=1(nhận)
Thay \(x = 2\) vào phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) ta thấy không thỏa mãn vì dưới dấu căn là \( - 1\) không thỏa mãn
Vậy \(x = 2\) không là nghiệm của phương trình do đó lời giải như trên là sai.
x2-2x-2(\(\sqrt{2x-3}\) - 1) =0 (x\(\ge\)\(\frac{3}{2}\))
<=> x(x-2) - 2(\(\frac{2x-3-1}{\sqrt{2x-3}+1}\)) =0
<=> (x-2)(x - 2\(\frac{2}{\sqrt{2x-3}+1}\))=0
<=> \(\orbr{\begin{cases}x-2=0\left(1\right)\\x-\frac{4}{\sqrt{2x-3}+1}=0\end{cases}\left(2\right)}\)
(1)=> x=2 (tm)
(2) <=> \(x\sqrt{2x-3}+x=4\)
<=> \(\sqrt{2x^3-3x^2}-2+\left(x-2\right)=0\)
<=> \(\frac{2x^3-3x^2-4}{\sqrt{2x^3-3x^2}+2}\) +(x-2)=0
<=> \(\frac{\left(x-2\right)\left(2x^2+x+2\right)}{\sqrt{2x^3-3x^2}+2}\)+(x-2)=0
<=> (x-2)(\(\frac{2x^2+x+2}{\sqrt{2x^3-3x^2}+2}\)+ 1) =0
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\\text{}\text{}\frac{2x^2+x+2}{\sqrt{2x^3-3x^2}+2}\end{cases}}=0\left(3\right)\)mà do x\(\ge\frac{3}{2}\)nên (3)>0
Vậy x=2